Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Different frequency

VME bus. It is possible to plug other standard VME boards in the ET instrument. For example, it is possible to add a DSP board, and carry out on-line analysis. But there is also CPU time left to add signal processing on the eddy current board itself. (For example on-line mixing of signals at 2 different frequencies). [Pg.277]

Figure Al.2.11. Resonant collective inodes of the 2 1 Fenni resonance system of a coupled stretch and bend with an approximate 2 1 frequency ratio. Shown is one end of a syimnetric triatomic such as H2O. The nomial stretch and bend modes are superseded by the horseshoe-shaped modes shown in (a) and (b). These two modes have different frequency, as further illustrated in figure Al.2.12. Figure Al.2.11. Resonant collective inodes of the 2 1 Fenni resonance system of a coupled stretch and bend with an approximate 2 1 frequency ratio. Shown is one end of a syimnetric triatomic such as H2O. The nomial stretch and bend modes are superseded by the horseshoe-shaped modes shown in (a) and (b). These two modes have different frequency, as further illustrated in figure Al.2.12.
Figure Al.2.12. Energy level pattern of a polyad with resonant collective modes. The top and bottom energy levels conespond to overtone motion along the two modes shown in figure Al.2.11. which have a different frequency. The spacing between adjacent levels decreases until it reaches a minimum between the third and fourth levels from the top. This minimum is the hallmark of a separatrix [29, 45] in phase space. Figure Al.2.12. Energy level pattern of a polyad with resonant collective modes. The top and bottom energy levels conespond to overtone motion along the two modes shown in figure Al.2.11. which have a different frequency. The spacing between adjacent levels decreases until it reaches a minimum between the third and fourth levels from the top. This minimum is the hallmark of a separatrix [29, 45] in phase space.
The first temi results in Rayleigh scattering which is at the same frequency as the exciting radiation. The second temi describes Raman scattering. There will be scattered light at (Vq - and (Vq -i- v ), that is at sum and difference frequencies of the excitation field and the vibrational frequency. Since a. x is about a factor of 10 smaller than a, it is necessary to have a very efficient method for dispersing the scattered light. [Pg.1159]

Infrared pulses of 200 fs duration with 150 of bandwidth centred at 2000 were used in this study. They were generated in a two-step procedure [46]. First, a p-BaB204 (BBO) OPO was used to convert the 800 mn photons from the Ti sapphire amplifier system into signal and idler beams at 1379 and 1905 mn, respectively. These two pulses were sent tlirough a difference frequency crystal (AgGaS2) to yield pulses... [Pg.1173]

Many other pulsed NMR experiments are possible, and some are listed in the final sections. Most can be canied out using the standard equipment described above, but some require additions such as highly controllable, pulsed field gradients, shaped RF pulses for (for example) single-frequency irradiations, and the combined use of pulses at several different frequencies. [Pg.1441]

The sinc fiinction describes the best possible case, with often a much stronger frequency dependence of power output delivered at the probe-head. (It should be noted here that other excitation schemes are possible such as adiabatic passage [9] and stochastic excitation [fO] but these are only infrequently applied.) The excitation/recording of the NMR signal is further complicated as the pulse is then fed into the probe circuit which itself has a frequency response. As a result, a broad line will not only experience non-unifonn irradiation but also the intensity detected per spin at different frequency offsets will depend on this probe response, which depends on the quality factor (0. The quality factor is a measure of the sharpness of the resonance of the probe circuit and one definition is the resonance frequency/haltwidth of the resonance response of the circuit (also = a L/R where L is the inductance and R is the probe resistance). Flence, the width of the frequency response decreases as Q increases so that, typically, for a 2 of 100, the haltwidth of the frequency response at 100 MFIz is about 1 MFIz. Flence, direct FT-piilse observation of broad spectral lines becomes impractical with pulse teclmiques for linewidths greater than 200 kFIz. For a great majority of... [Pg.1471]

RE is generated at two frequencies one is fixed at the free nnclear frequency appropriate to die sort of nnclei under scrutiny and the second is swept. These two frequencies are mnltiplied to obtain the sum and the difference frequencies, which are nsed to irradiate the sample. The experiment can be understood... [Pg.1571]

In contrast to the ionization of C q after vibrational excitation, typical multiphoton ionization proceeds via the excitation of higher electronic levels. In principle, multiphoton ionization can either be used to generate ions and to study their reactions, or as a sensitive detection technique for atoms, molecules, and radicals in reaction kinetics. The second application is more common. In most cases of excitation with visible or UV laser radiation, a few photons are enough to reach or exceed the ionization limit. A particularly important teclmique is resonantly enlianced multiphoton ionization (REMPI), which exploits the resonance of monocluomatic laser radiation with one or several intennediate levels (in one-photon or in multiphoton processes). The mechanisms are distinguished according to the number of photons leading to the resonant intennediate levels and to tire final level, as illustrated in figure B2.5.16. Several lasers of different frequencies may be combined. [Pg.2135]

Figure Cl.5.8. Spectral jumping of a single molecule of terrylene in polyethylene at 1.5 K. The upper trace displays fluorescence excitation spectra of tire same single molecule taken over two different 20 s time intervals, showing tire same molecule absorbing at two distinctly different frequencies. The lower panel plots tire peak frequency in tire fluorescence excitation spectmm as a function of time over a 40 min trajectory. The molecule undergoes discrete jumps among four (briefly five) different resonant frequencies during tliis time period. Arrows represent scans during which tire molecule had jumped entirely outside tire 10 GHz scan window. Adapted from... Figure Cl.5.8. Spectral jumping of a single molecule of terrylene in polyethylene at 1.5 K. The upper trace displays fluorescence excitation spectra of tire same single molecule taken over two different 20 s time intervals, showing tire same molecule absorbing at two distinctly different frequencies. The lower panel plots tire peak frequency in tire fluorescence excitation spectmm as a function of time over a 40 min trajectory. The molecule undergoes discrete jumps among four (briefly five) different resonant frequencies during tliis time period. Arrows represent scans during which tire molecule had jumped entirely outside tire 10 GHz scan window. Adapted from...
The sum-frequency case of co = co -t CO2 is called up-conversion, tire difference-frequency co = co - CO2 down-conversion, reflecting tire increase or decrease of tire generated optical frequency co from tire input frequencies co and 052-... [Pg.3029]

In hyperspherical coordinates, the wave function changes sign when <]) is increased by 2k. Thus, the cotTect phase beatment of the (]) coordinate can be obtained using a special technique [44 8] when the kinetic energy operators are evaluated The wave function/((])) is multiplied with exp(—i(j)/2), and after the forward EFT [69] the coefficients are multiplied with slightly different frequencies. Finally, after the backward FFT, the wave function is multiplied with exp(r[Pg.60]

Problems arise if a light pulse of finite duration is used. Here, different frequencies of the wave packet are excited at different times as the laser pulse passes, and thus begin to move on the upper surface at different times, with resulting interference. In such situations, for example, simulations of femtochemistry experiments, a realistic simulation must include the light field explicitely [1]. [Pg.270]

We can sample the energy density of radiation p(v, T) within a chamber at a fixed temperature T (essentially an oven or furnace) by opening a tiny transparent window in the chamber wall so as to let a little radiation out. The amount of radiation sampled must be very small so as not to disturb the equilibrium condition inside the chamber. When this is done at many different frequencies v, the blackbody spectrum is obtained. When the temperature is changed, the area under the spechal curve is greater or smaller and the curve is displaced on the frequency axis but its shape remains essentially the same. The chamber is called a blackbody because, from the point of view of an observer within the chamber, radiation lost through the aperture to the universe is perfectly absorbed the probability of a photon finding its way from the universe back through the aperture into the chamber is zero. [Pg.2]

Different motions of a molecule will have different frequencies. As a general rule of thumb, bond stretches are the highest energy vibrations. Bond bends are somewhat lower energy vibrations and torsional motions are even lower. The lowest frequencies are usually torsions between substantial pieces of large molecules and breathing modes in very large molecules. [Pg.92]

If the applied force varies sinusoidally with time, the period of the oscillation defines the time scale. Quite different mechanical responses are expected at different frequencies. This type of experiment will be described in Secs. 3.10 and 3.11. [Pg.162]

Figure 3.16 Some experimental dynamic components, (a) Storage and loss compliance of crystalline polytetrafluoroethylene measured at different frequencies. [Data from E. R. Fitzgerald, J. Chem. Phys. 27 1 180 (1957).] (b) Storage modulus and loss tangent of poly(methyl acrylate) and poly(methyl methacrylate) measured at different temperatures. (Reprinted with permission from J. Heijboer in D. J. Meier (Ed.), Molecular Basis of Transitions and Relaxations, Gordon and Breach, New York, 1978.)... Figure 3.16 Some experimental dynamic components, (a) Storage and loss compliance of crystalline polytetrafluoroethylene measured at different frequencies. [Data from E. R. Fitzgerald, J. Chem. Phys. 27 1 180 (1957).] (b) Storage modulus and loss tangent of poly(methyl acrylate) and poly(methyl methacrylate) measured at different temperatures. (Reprinted with permission from J. Heijboer in D. J. Meier (Ed.), Molecular Basis of Transitions and Relaxations, Gordon and Breach, New York, 1978.)...
When results are compared for polymerization experiments carried out at different frequencies of blinking, it is found that the rate depends on that frequency. To see how this comes about, we must examine the variation of radical concentration under non-stationary-state conditions. This consideration dictates the choice of photoinitiated polymerization, since in the latter it is almost possible to turn on or off—with the blink of a light—the source of free radicals. The qualifying almost in the previous sentence is actually the focus of our attention, since a short but finite amount of time is required for the radical concentration to reach [M-] and a short but finite amount of time is required for it to drop back to zero after the light goes out. [Pg.374]

Both and n are clearly frequency dependent, since the foregoing argument shows that various effects contribute to the polarity of a molecule at different frequencies. [Pg.669]


See other pages where Different frequency is mentioned: [Pg.297]    [Pg.218]    [Pg.805]    [Pg.1162]    [Pg.1162]    [Pg.1168]    [Pg.1169]    [Pg.1185]    [Pg.1190]    [Pg.1201]    [Pg.1210]    [Pg.1247]    [Pg.1297]    [Pg.1385]    [Pg.1445]    [Pg.1475]    [Pg.1569]    [Pg.1578]    [Pg.1579]    [Pg.1579]    [Pg.1983]    [Pg.2108]    [Pg.2443]    [Pg.2448]    [Pg.46]    [Pg.133]    [Pg.257]    [Pg.188]    [Pg.379]    [Pg.183]    [Pg.51]    [Pg.52]   


SEARCH



A Pair of Oscillators with Different Frequencies

Allele distribution/ frequencies differences

DFG (difference frequency

Difference frequencies, nonlinear optics

Difference frequency spectromete

Difference frequency, Doppler scattering

Difference-frequency generation infrared pulses

Difference-frequency laser

Difference-frequency spectrometer

Different Types of Low-Frequency Electrohydrodynamics

Frequency difference

Frequency difference

Frequency difference, nonidentical atoms

Frequency generation difference

Sum and Difference Frequency Generation

Three-wave mixing processes doubling, sum and difference frequency

© 2024 chempedia.info