Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocyclic Dienophiles

Weinreb SM, Garigipati RS, Gainor JA. Natural product s)mthesis via cydoadditions with N-sulfinyl dienophiles. Heterocycles. 1984 21 309-324. [Pg.113]

Since diazaquinones are among the most powerful dienophiles, they undergo [4+2] cycloaddition (Diels-Alder) reactions with a great variety of dienes to give various heterocyclic systems accessible with difficulty by other methods. Diazaquinone reacts with butadiene and substituted butadienes, carbocyclic and heterocyclic dienes, 1-vinylcycloalkenes, polyaromatic compounds and vinylaromatic compounds to afford bicyclic and polycyclic bridgehead diaza systems, including diazasteroids (Scheme 56). [Pg.38]

Furans, thiophenes and pyrroles have all been obtained by addition of alkynic dienophiles to a variety of other five-membered heterocycles, as illustrated in Scheme 104. As the alkynic moiety provides carbons 3 and 4 of the resulting heterocycle, this synthetic approach provides an attractive way of introducing carbonyl containing substituents at these positions, especially as many of the heterocyclic substrates are readily generated. Such reactions do... [Pg.144]

Small unsaturated rings are usually very reactive undergoing ring opening in a number of ways, and this characteristic has been utilized in heterocyclic synthesis. In their role as dienophiles or dipolarophiles, the initial cycloaddition is usually followed by a valence tautomerism resulting in a six-membered or larger ring system. Several examples exist, however, where this does not occur, and these are described below. [Pg.153]

The hetero Diels-Alder [4+2] cycloaddition (HDA reaction) is a very efficient methodology to perform pyrimidine-to-pyridine transformations. Normal (NHDA) and Inverse (IHDA) cycloaddition reactions, intramolecular as well as intermolecular, are reported, although the IHDA cycloadditions are more frequently observed. The NHDA reactions require an electron-rich heterocycle, which reacts with an electron-poor dienophile, while in the IHDA cycloadditions a n-electron-deficient heterocycle reacts with electron-rich dienophiles, such as 0,0- and 0,S-ketene acetals, S,S-ketene thioacetals, N,N-ketene acetals, enamines, enol ethers, ynamines, etc. [Pg.51]

The Diels-Alder reaction is of wide scope. Not all the atoms involved in ring formation have to be carbon atoms the hetero-Diels-Alder reaction involving one or more heteroatom centers can be used for the synthesis of six-membered heterocycles. The reverse of the Diels-Alder reaction—the retro-Diels-Alder reaction —also is of interest as a synthetic method. Moreover and most importantly the usefulness of the Diels-Alder reaction is based on its 5y -stereospecifi-city, with respect to the dienophile as well as the diene, and its predictable regio-and c ifo-selectivities. °... [Pg.89]

Interestingly, in the inverse-electron-demand Diels-Alder reactions of oxepin with various enophiles such as cyclopentadienones and tetrazines the oxepin form, rather than the benzene oxide, undergoes the cycloaddition.234 236 Usually, the central C-C double bond acts as dienophile. Oxepin reacts with 2,5-dimethyl-3,4-diphenylcyclopenta-2,4-dienone to give the cycloadduct 6 across the 4,5-C-C double bond of the heterocycle.234 The adduct resists thermal carbon monoxide elimination but undergoes cycloreversion to oxepin and the cyclopenta-dienone.234... [Pg.52]

The reactivity of heterocyclic dienes is determined by the nature and number of heteroatoms and, in the case of heteroaromatic compounds, also by the aromatic character. Furans undergo Diels-Alder reactions with strong dienophiles and generally afford cxo-cycloadducts which are thermodynamically more stable than the kinetically favoured c z/o-adducts. [Pg.40]

Ethylene disulfonyl-1,3-butadiene (43) is an example of an outer-ring diene with a non-aromatic six-membered heterocyclic ring containing sulfur. It is prepared by thermolysis of sulfolenes in the presence of a basic catalyst. It is very reactive [43] and even though it is electron-deficient, it readily reacted with both electron-rich and electron-poor dienophiles (Equation 2.15). [Pg.44]

Indole-2,3-quinodimethanes [44] 44 are bicyclic outer-ring dienes that are widely used to prepare a variety of heterocyclic polycyclic compounds. These dienes, generated by extrusion of CO2 from lactones, are then trapped by dienophiles. Some examples of Diels Alder reactions of the dienes 44 are reported in Scheme 2.19. [Pg.45]

Dihydro-1-vinylnaphthalene (67) as well as 3,4-dihydro-2-vinylnaphtha-lene (68) are more reactive than the corresponding aromatic dienes. Therefore they may also undergo cycloaddition reactions with low reactive dienophiles, thus showing a wider range of applications in organic synthesis. The cycloadditions of dienes 67 and 68 and of the 6-methoxy-2,4-dihydro-1-vinylnaphthalene 69 have been used extensively in the synthesis of steroids, heterocyclic compounds and polycyclic aromatic compounds. Some of the reactions of dienes 67-69 are summarized in Schemes 2.24, 2.25 and 2.26. In order to synthesize indeno[c]phenanthrenones, the cycloaddition of diene 67 with 3-bromoindan-l-one, which is a precursor of inden-l-one, was studied. Bromoindanone was prepared by treating commercially available indanone with NBS [64]. [Pg.53]

Silylthioaldehydes 103, reactive dienophiles formed in situ from acetals according to a general method, are directly trapped with dienes to afford sulfur-containing heterocyclic compounds in good yield (Equation 2.29). Silylthioaldehydes are quite reactive in comparison with the aliphatic ones [102] which are rather inert in the cycloaddition reactions. [Pg.70]

Chiral heterocyclic compounds containing vicinal oxygen and nitrogen atoms were achieved by an asymmetric Diels-Alder reaction [111] of chiral acylnitroso dienophiles 111. The latter were prepared in situ from alcohols 110, both antipodes of which are available from camphor, and trapped with dienes (Scheme 2.46). Both the yield (65-94 %i) and diastereoisomeric excess (91-96%) were high. [Pg.73]

Strong effects of the catalyst on the regioselectivity have been observed in the cycloadditions of a variety of heterocyclic dienophiles. Some results of the BF3-catalyzed reactions of quinoline-5,8-dione (21) and isoquinoline-5,8-dione (22) with isoprene (2) and (E)-piperylene (3) [25], and of the cycloadditions of 4-quinolones (23a, 23b) as well as 4-benzothiopyranone (23c) with 2-piperidino-butadienes, are reported [26] in Scheme 3.8 and Equation 3.2. The most marked... [Pg.106]

Avenoza A., Busto J. H., Cativiela C., Peregrina G. M. and Zurbano M. M. The use of 4-Hetaryliden- and 4-Aryliden-5(4H)-Oxazolones as Dienophiles in the Diels-Alder Reactions in Targets in Heterocyclic Systems-Chemistry and Properties vol 3. 1999, Eds. Attanasi O. A. and Spinelli D., Pb. Soc. Chim. Ital. Keywords hetero-Diels-Alder reactions... [Pg.306]

It has been shown that cross-coupling reactions constitute a very mild method to introduce different alkyl and aryl groups to the most active C-3 position of the pyrazinone ring [26]. The broadly functionahzed 2-azadiene system of the title compounds was studied in cycloaddition reactions with various electron-reach and electron-poor dienophiles to provide highly substituted heterocycles [24]. [Pg.273]

Carbon-carbon multiple bonds are not the only units that can participate in Diels-Alder reactions. Other double- and triple-bond compounds can be dienophiles and they give rise to heterocyclic compounds. ... [Pg.1075]

Azadienes undergo Diels-Alder reactions to form pyridine, dihydro- and tetrahydropyridine derivatives. N-Vinyl lactim ethers undergo Diels-Alder reactions with a limited set of dienophiles. " Thioketones react with dienes to give Diels-Alder cycloadducts. The carbonyl group of lactams have also been shown to be a dienophile. Certain heterocyclic aromatic rings (among them furans) can also behave as dienes in the Diels-Alder reaction. Some hetero dienes that give the reaction are -C=C-C=0, 0=C-C=0, and N=C-C=N. ... [Pg.1075]

Diels-Alder reactions are one of the most fundamental and useful reactions in synthetic organic chemistry. Various dienes and dienophiles have been employed for this useful reaction.1 Nitroalkenes take part in a host of Diels-Alder reactions in various ways, as outlined in Scheme 8.1. Various substituted nitroalkenes and dienes have been employed for this reaction without any substantial improvement in the original discovery of Alder and coworkers.2 Nitrodienes can also serve as 4ti-components for reverse electron demand in Diels-Alder reactions. Because the nitro group is converted into various functional groups, as discussed in Chapters 6 and 7, the Diels-Alder reaction of nitroalkenes has been frequently used in synthesis of complex natural products. Recently, Denmark and coworkers have developed [4+2] cycloaddition using nitroalkenes as heterodienes it provides an excellent method for the preparation of heterocyclic compounds, including pyrrolizidine alkaloids. This is discussed in Section 8.3. [Pg.231]

It has been known that aromatic heterocycles such as furan, thiophene, and pyrrole undergo Diels-Alder reactions despite their aromaticity and hence expected inertness. Furans have been especially used efficiently as dienes due to their electron-rich properties. Thiophenes and pyrroles are less reactive as dienes than furans. But pyrroles with A-elecIron-withdrawing substituents are efficient dienes. There exists a limited number of examples of five-membered, aromatic heterocycles acting as dienophiles in Diels-Alder reactions. Some nitro heteroaromatics serve as dienophiles in the Diels-Alder reactions. Heating a mixture of l-(phenylsulfonyl)-3-nitropyrrole and isoprene at 175 °C followed by oxidation results in the formation of indoles (see Eq. 8.22).35a A-Tosyl-3-nitroindole undergoes high-yielding Diels-Alder reactions with... [Pg.240]

Hetero Diels-Alder reactions using nitroalkenes followed by 1,3-dipolar cycloadditions provide a useful strategy for the construction of polycyclic heterocycles, which are found in natural products. Denmark has coined the term tandem [4+2]/[3+2] cycloaddition of nitroalkenes for this type of reaction. The tandem [4+2]/[3+2] cycloaddition can be classified into four families as shown in Scheme 8.31, where A and D mean an electron acceptor and electron donor, respectively.149 In general, electron-rich alkenes are favored as dienophiles in [4+2] cycloadditions, whereas electron-deficient alkenes are preferred as dipolarophiles in [3+2] cycloadditions. [Pg.279]

As might be expected of a reactive dienophile, ADC compounds react readily with a variety of 1,3-dipoles to give five-membered ring heterocycles. These reactions are discussed in detail in Section IV,C. [Pg.10]

As with five-membered ring formation, the reactions of ADC compounds which lead to six-membered ring heterocycles can be classified according to how the ADC compound reacts in the initial step. Most common is the Diels-Alder reaction, with the ADC compound acting as dienophile. Six-membered rings also result from the reaction of monoenes with ADC compounds acting as the 4n component, and by cyclization or other transformation of an initial adduct. [Pg.30]

The Diels-Alder reaction is a useful way of synthesizing six-membered carbocyclic rings. Since ADC compounds are usually better dienophiles than the corresponding C=C compounds, the Diels-Alder reaction provides a good general route to pyridazines, and their reduced derivatives. Although vast numbers of examples of Diels-Alder reaction involving ADC compounds have been reported, not many of these have been aimed specifically at heterocyclic synthesis. [Pg.30]

This review has attempted to bring together the reactions of ADC compounds which are useful in heterocyclic synthesis, and to develop the general trends that have so far appeared in their reactivity. Thus, in general, ADC compounds are more powerful dienophiles than the corresponding C=C compounds, particularly when the azo bond is in the cis configuration. However, they are also more reactive as enophiles and electrophiles, and may react as such even in cases where Diels-Alder (or other) cycloaddition is formally possible, and where the corresponding C=C compounds do react as dienophiles. Nevertheless, despite this added complication, the major use of ADC compounds has been as dienophiles in the synthesis of pyridazines... [Pg.44]

Its seems likely that ADC compounds will continue to find use as reactive dienophiles, this reaction being well established by now, and it will be interesting to see if any of their less well known reactions are further exploited in heterocyclic synthesis. [Pg.45]


See other pages where Heterocyclic Dienophiles is mentioned: [Pg.91]    [Pg.635]    [Pg.656]    [Pg.225]    [Pg.54]    [Pg.186]    [Pg.187]    [Pg.43]    [Pg.74]    [Pg.106]    [Pg.1152]    [Pg.1158]    [Pg.184]    [Pg.106]    [Pg.401]    [Pg.164]    [Pg.830]    [Pg.2]    [Pg.27]    [Pg.267]    [Pg.310]   
See also in sourсe #XX -- [ Pg.106 , Pg.107 ]




SEARCH



Dienophil

Dienophile

Dienophiles

Heterocycles as dienophiles

© 2024 chempedia.info