Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes quinones

The retrosynthetic concept of the Nicolaou group is shown in Scheme 22. The target molecule 36 is disconnected via an IMDA cyclization of the diene quinone precursor 138, which would be generated from the tetraline derivative 139 using Wittig chemistry followed by aromatic oxidation. A Claisen-type rearrangement would provide access to 139 whereby the side chain required for the rearrangement of 140 would be introduced by 0-acylation. The core of 141 would be formed via an intermolecular Diels-Alder reaction between diene 142 andp-benzoquinone 130 [42]. [Pg.34]

Similarly, reductive substitution of a cyclopentadienyl ring of cobaltocene by diene, quinone, and cyclopentadienone moieties serves as a synthetic procedure for a series of ( / -ligand)(cyclopentadienyl)cobalt compounds ... [Pg.560]

Note that the stereochemistry comes out right. H s a and b are cis because they were cis in the starting quinone and the Diels-Alder reaction is stereospecific in this respect. H is also cis to and H " because the Diels-Alder reaction is stereoselectively endo. These points are described in more detail in Norman p.284-6 and explained in Ian Fleming Frontier Orbitals and Organic Chemical Reactions, Wiley 1976, p. 106-109. How would you make diene A ... [Pg.70]

The problems associated with predicting regioselectivity in quinone Diels-Alder chemistry have been studied, and a mechanistic model based on frontier molecular orbital theory proposed (85). In certain cases of poor regioselectivity, eg, 2-methoxy-5-methyl-l,4-ben2oquinone with alkyl-substituted dienes, the use of Lewis acid catalysts is effective (86). [Pg.414]

Especially sensitive quinones can be generated in situ, the diene adduct, eg (88), can be obtained in excellent yield (87). For R = methoxycarbonyl, carboxaldehyde, and acetyl, the yields are 95, 97, and 100%, respectively. [Pg.414]

Typical diene reactions of 1,2-quinones are also weU known (89). [Pg.414]

The procedure described is essentially that of Belleau and Weinberg and represents the only known way of obtaining the title compound. One other quinone acetal, 1,4,9,12-t6traoxadispiro[4.2.4.2]tetradeea-6,13-diene, has been synthesized by a conventional method (reaction of 1,4-cyclohexanedione with ethylene glycol followed by bromination and dehydrobromination ) as well as by an electrochemical method (anodic oxidation of 2,2-(l,4-phenylenedioxy)diethanol ). Quinone acetals have been used as intermediates in the synthesis of 4,4-dimethoxy-2,5-cyclohexadienone,. syw-bishomoquinone, - and compounds related to natural products. ... [Pg.94]

Dioxo-2, 4, 5 -trimethylcyclohexa-l, 4 -diene)-3,3-dimetbylpropi-onamide (Q). The application of this well-known acid [3-(3, 6 -dioxo-2, 4, 5 -trimethylcyclohexa-l, 4 -diene)-3,3-dimethylpropionic acid] to protection of the amino function for peptide synthesis has been examined. Reduction of the quinone with sodium dithionite causes rapid trimethyl lock -facilitated ring closure with release of the amine. [Pg.562]

Aromatic fluoro-compounds have been prepared by thermal cycloaddition of fluorinated 1,3-butadienes 10-12 (Figure 2.1) with several dienophiles. Fluorophenols were obtained by cycloaddition of diene 10 with quinones [11]... [Pg.33]

The use of ultrasonic (US) radiation (typical range 20 to 850 kHz) to accelerate Diels-Alder reactions is undergoing continuous expansion. There is a parallelism between the ultrasonic and high pressure-assisted reactions. Ultrasonic radiations induce cavitation, that is, the formation and the collapse of microbubbles inside the liquid phase which is accompanied by the local generation of high temperature and high pressure [29]. Snyder and coworkers [30] published the first ultrasound-assisted Diels-Alder reactions that involved the cycloadditions of o-quinone 37 with appropriate dienes 38 to synthesize abietanoid diterpenes A-C (Scheme 4.7) isolated from the traditional Chinese medicine, Dan Shen, prepared from the roots of Salvia miltiorrhiza Bunge. [Pg.154]

Enantiomers (M)- and (P)-helicenebisquinones [32] 93 have been synthesized by high pressure Diels-Alder reaction of homochiral (+)-(2-p-tolylsulfo-nyl)-l,4-benzoquinone (94) in excess with dienes 95 and 96 prepared from the common precursor 97 (Scheme 5.9). The approach is based on the tandem [4 + 2] cycloaddition/pyrolitic sulfoxide elimination as a general one-pot strategy to enantiomerically enriched polycyclic dihydroquinones. Whereas the formation of (M)-helicene is explained by the endo approach of the arylethene toward the less encumbered face of the quinone, the formation of its enantiomeric (P)-form can be the result of an unfavourable interaction between the OMe group of approaching arylethene and the sulfinyl oxygen of 94. [Pg.219]

Mataka and coworkers reported the studies of the Diels-Alder reactions of [3.3] orthoanthracenophanes 96 and 97, of which anthraceno unit, the potential diene, has two nonequivalent faces, inside and outside. The reactions of 96 with dien-ophiles gave the mixtures of inside and outside adducts with the ratios between 1 1 and 1 1.5. However, the ratio changes drastically, in favor of the inside adducts, when 97 reacts with dienophiles such as maleic anhydride, maleimide and naphto-quinone [55] (Scheme 46). Mataka suggested that the Jt-facial selectivity is controlled by an orbital interaction between the electron-poor dienophiles and the Jt-orbital of the facing aromatics, which would lead to a stabilization of the transition state, while Nishio suggested that the selectivity is due to the attractive k/k or CH/jt interaction [53]. [Pg.211]

It will be convenient to consider under one heading all those unsaturated systems which do not fall under any of the sections previously discussed. There are four categories which are included in this catch-all heading. They are pyridones, quinones, multiple substitution at nonequivalent sites, allenes and cumulenes, and conjugated dienes and polyenes. [Pg.166]

The reaction between o-quinones and electron rich dienes leads to benzodioxanes. It is proposed that an initial HDA followed by a [3,3] sigmatropic rearrangement account for the stereochemistry of the products <96JCS(P1)443>. [Pg.307]

A-l,3-dimethylbutyl-A -phenyl quinone diimine (6QD1) has been introduced as a multifunctional additive for diene rubbers and provides an advantage in mixing characteristics (functions as peptizer and improves scorch safety) as well as improved performance (better antioxidant activity than paraphenylenediamine antidegradants) of the end products [36]. [Pg.1034]

Evans and Wu have prepared complexes derived from PyBOx ligands and samarium or gadolinium triflates that were efficient for the Diels-Alder reaction between various quinones and dienes [102] (see Scheme 38 for an example). [Pg.124]

In a synthesis of gibberellic acid, a diene and quinone, both with oxygen-substituted side chains, gave the initial intermediate. Later in the synthesis, an intramolecular D-A reaction was used to construct the A-ring. [Pg.494]

Entry 7 features a quinone dienophile. The reaction exhibits the expected selectivity for the more electrophilic quinone double bond (see p. 506). The reaction is also regioselective with respect to the diene, with the methyl group acting as a donor substituent. The enantioselectivity is 80%. [Pg.517]

Pirkle, W. H. Smith, S. G. Koser, G. F. Stereospecificity and wavelength dependence in the photochemical rearrangement of spiro[2.5]octa-4,7-dien-6-ones to quinone methides. j. Am. Chem. Soc. 1969, 91, 1580-1582. [Pg.33]

Schuster, D. I. Krull, I. S. Photochemistry of unsaturated ketones in solution. XIX. Photochemistry of spiro[2.5]octa-4,7-dien-6-one. 2. Mechanistic aspects and the relationship to the photochemistry of quinone methides. Mol. Photochem. 1969, 1, 107-133. [Pg.33]

Lev, D. A. Grotjahn, D. B. Amouri, H. Reversal of reactivity in diene-complexed o-quinone methide complexes insights and explanations from ab initio density functional theory calculations. Organometallics 2005, 24, 4232 -240. [Pg.64]

Release and Reactivity of tf-o-QMs Although the r 2-o-QM Os complexes 11 are stable when exposed to air or dissolved in water, the quinone methide moiety can be released upon oxidation (Scheme 3.8).16 For example, reaction of the Os-based o-QM 12 with 1.5 equivalents of CAN (ceric ammonium nitrate) in the presence of an excess of 3,4-dihydropyran led to elimination of free o-QM and its immediate trapping as the Diels-Alder product tetrahydropyranochromene, 14. Notably, in the absence of the oxidizing agent, complex 12 is completely unreactive with both electron-rich (dihydropyran) and electron-deficient (A-methylmaleimide) dienes. [Pg.73]

Zanarotti, A. Preparation and reactivity of 2,6-dimethoxy-4-allylidene-2,5-cyclohexa-dien-l-one (vinyl quinone methide). A novel synthesis of sinapyl alcohol. Tetrahedron Lett, 1982, 23, 3815-3818. [Pg.416]

Further development of this aerobic oxidation was done by utilizing a quinone containing cobalt tetraphenyl porphyrin47. This gives a more efficient electron transfer between quinone and porphyrin and results in a faster aerobic 1,4-diacetoxylation of the diene. The... [Pg.667]

Condensed benzo[i>]furan molecules can be prepared by inter- or intra-molecular Diels-Alder reactions from furo[3,4-b]benzofurans, and some interesting intermolecular examples are listed below. As can be seen, the furo[3,4-i>]benzofuran 60 underegoes Diels-Alder reactions with naphtho-l,4-quinone in the presence of Znl2 as a Lewis acid to form the aromatized cycloadduct. When the diene precursor reacts with benzo-l,4-quinone in the absence of Znl2, the product is obtained as an endo-exo mixture <00JCS(P1)1387>. [Pg.141]


See other pages where Dienes quinones is mentioned: [Pg.827]    [Pg.451]    [Pg.451]    [Pg.438]    [Pg.279]    [Pg.251]    [Pg.231]    [Pg.827]    [Pg.451]    [Pg.451]    [Pg.438]    [Pg.279]    [Pg.251]    [Pg.231]    [Pg.254]    [Pg.238]    [Pg.18]    [Pg.22]    [Pg.85]    [Pg.56]    [Pg.352]    [Pg.56]    [Pg.1062]    [Pg.1081]    [Pg.501]    [Pg.475]    [Pg.276]    [Pg.166]    [Pg.777]    [Pg.903]    [Pg.249]    [Pg.206]   
See also in sourсe #XX -- [ Pg.426 ]




SEARCH



© 2024 chempedia.info