Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels chiral Lewis-acids

Base catalyzed Diels- Chiral Lewis acids (see ... [Pg.326]

The first example of enantioselective catalysis of a Diels-Alder reaction was reported in 1979 . Since then, an extensive set of successful chiral Lewis-acid catalysts has been prepared. Some selected examples will be presented here together with their mechanistic interpretation. For a more complete... [Pg.77]

Catalytic asymmetric Diels-Alder reactions are presented by Hayashi, who takes as the starting point the synthetically useful breakthrough in 1979 by Koga et al. The various chiral Lewis acids which can catalyze the reaction of different dieno-philes are presented. Closely related to the Diels-Alder reaction is the [3-1-2] carbo-cyclic cycloaddition of palladium trimethylenemethane with alkenes, discovered by Trost and Chan. In the second chapter Chan provides some brief background information about this class of cycloaddition reaction, but concentrates primarily on recent advances. The part of the book dealing with carbo-cycloaddition reactions is... [Pg.2]

Catalytic enantioselective hetero-Diels-Alder reactions are covered by the editors of the book. Chapter 4 is devoted to the development of hetero-Diels-Alder reactions of carbonyl compounds and activated carbonyl compounds catalyzed by many different chiral Lewis acids and Chapter 5 deals with the corresponding development of catalytic enantioselective aza-Diels-Alder reactions. Compared with carbo-Diels-Alder reactions, which have been known for more than a decade, the field of catalytic enantioselective hetero-Diels-Alder reactions of carbonyl compounds and imines (aza-Diels-Alder reactions) are very recent. [Pg.3]

Gothelf presents in Chapter 6 a comprehensive review of metal-catalyzed 1,3-di-polar cycloaddition reactions, with the focus on the properties of different chiral Lewis-acid complexes. The general properties of a chiral aqua complex are presented in the next chapter by Kanamasa, who focuses on 1,3-dipolar cycloaddition reactions of nitrones, nitronates, and diazo compounds. The use of this complex as a highly efficient catalyst for carbo-Diels-Alder reactions and conjugate additions is also described. [Pg.3]

Asymmetric Diels-Alder reactions using a dienophile containing a chiral auxiliary were developed more than 20 years ago. Although the auxiliary-based Diels-Alder reaction is still important, it has two drawbacks - additional steps are necessary, first to introduce the chiral auxiliary into the starting material, and then to remove it after the reaction. At least an equimolar amount of the chiral auxiliary is, moreover, necessary. After the discovery that Lewis acids catalyze the Diels-Alder reaction, the introduction of chirality into such catalysts has been investigated. The Diels-Alder reaction utilizing a chiral Lewis acid is truly a practical synthetic transformation, not only because the products obtained are synthetically useful, but also because a catalytic amount of the chiral component can, in theory, produce a huge amount of the chiral product. [Pg.4]

The Chiral Lewis Acid-catalyzed Diels-AIder Reaction... [Pg.6]

The Chiral Lewis Acid-catalyzed Diels-Alder Reaction 9 Fig. 1.1 CAB catalyst 3 and methacrolein Me... [Pg.9]

To overcome these problems with the first generation Brmsted acid-assisted chiral Lewis acid 7, Yamamoto and coworkers developed in 1996 a second-generation catalyst 8 containing the 3,5-bis-(trifluoromethyl)phenylboronic acid moiety [10b,d] (Scheme 1.15, 1.16, Table 1.4, 1.5). The catalyst was prepared from a chiral triol containing a chiral binaphthol moiety and 3,5-bis-(trifluoromethyl)phenylboronic acid, with removal of water. This is a practical Diels-Alder catalyst, effective in catalyzing the reaction not only of a-substituted a,/ -unsaturated aldehydes, but also of a-unsubstituted a,/ -unsaturated aldehydes. In each reaction, the adducts were formed in high yields and with excellent enantioselectivity. It also promotes the reaction with less reactive dienophiles such as crotonaldehyde. Less reactive dienes such as isoprene and cyclohexadiene can, moreover, also be successfully employed in reactions with bromoacrolein, methacrolein, and acrolein dienophiles. The chiral ligand was readily recovered (>90%). [Pg.13]

Brmsted acid-assisted chiral Lewis acid 8 was also applied to the intramolecular Diels-Alder reaction of an a-unsubstituted triene derivative. ( , )-2,7,9-Decatrienal reacts in the presence of 30 mol% of the catalyst to afford the bicyclo compound in high yield and good enantioselectivity [lOd] (Scheme 1.17). [Pg.14]

With few exceptions chiral Lewis acids are usually moisture-sensitive and require anhydrous conditions, but bench-stable aquo complexes such as [Cu(S,S)-t-Bu-box)(H20)2](SbF6)2 were found to promote the Diels-Alder reaction as effectively as the anhydrous copper reagent. [Pg.28]

A great advantage of catalyst 24b compared with other chiral Lewis acids is that it tolerates the presence of ester, amine, and thioether functionalities. Dienes substituted at the 1-position by alkyl, aryl, oxygen, nitrogen, or sulfur all participate effectively in the present asymmetric Diels-Alder reaction, giving adducts in over 90% ee. The reaction of l-acetoxy-3-methylbutadiene and acryloyloxazolidinone catalyzed by copper reagent 24b, affords the cycloadduct in 98% ee. The first total synthesis of ewt-J -tetrahydrocannabinol was achieved using the functionalized cycloadduct obtained [23, 33e] (Scheme 1.39). [Pg.29]

Since Evans s initial report, several chiral Lewis acids with copper as the central metal have been reported. Davies et al. and Ghosh et al. independently developed a bis(oxazoline) ligand prepared from aminoindanol, and applied the copper complex of this ligand to the asymmetric Diels-Alder reaction. Davies varied the link between the two oxazolines and found that cyclopropyl is the best connector (see catalyst 26), giving the cycloadduct of acryloyloxazolidinone and cyclopentadiene in high optical purity (98.4% ee) [35] (Scheme 1.45). Ghosh et al., on the other hand, obtained the same cycloadduct in 99% ee by the use of unsubstituted ligand (see catalyst 27) [36] (Scheme 1.46, Table 1.19). [Pg.32]

The inverse electron-demand Diels-Alder reaction is also accelerated by Lewis acids, but the successful application of chiral Lewis acids to this kind of Diels-Alder reaction is very rare. Marko and coworkers applied Kobayashi s catalyst system (Yb(OTf)3-BINOL-amine) to the Diels-Alder reaction of 3-methoxycarbonyl-2-py-rone with vinyl ether or sulfide [58] (Scheme 1.72, Table 1.29). A bulky ether or... [Pg.45]

In all the reactions described so far a chiral Lewis acid has been employed to promote the Diels-Alder reaction, but recently a completely different methodology for the asymmetric Diels-Alder reaction has been published. MacMillan and coworkers reported that the chiral secondary amine 40 catalyzes the Diels-Alder reaction between a,/ -unsaturated aldehydes and a variety of dienes [59]. The reaction mechanism is shown in Scheme 1.73. An a,/ -unsaturated aldehyde reacts with the chiral amine 40 to give an iminium ion that is sufficiently activated to engage a diene reaction partner. Diels-Alder reaction leads to a new iminium ion, which upon hydrolysis af-... [Pg.46]

Below is a table of asymmetric Diels-Alder reactions of a,/ -unsaturated aldehydes catalyzed by chiral Lewis acids 1-17 (Fig. 1.10, 1.11). The amount of catalyst, reaction conditions (temperature, time), chemical yield, endojexo selectivity, and optical purity are listed (Table 1.32). [Pg.48]

Dipolar cydoadditions are one of the most useful synthetic methods to make stereochemically defined five-membered heterocydes. Although a variety of dia-stereoselective 1,3-dipolar cydoadditions have been well developed, enantioselec-tive versions are still limited [29]. Nitrones are important 1,3-dipoles that have been the target of catalyzed enantioselective reactions [66]. Three different approaches to catalyzed enantioselective reactions have been taken (1) activation of electron-defident alkenes by a chiral Lewis acid [23-26, 32-34, 67], (2) activation of nitrones in the reaction with ketene acetals [30, 31], and (3) coordination of both nitrones and allylic alcohols on a chiral catalyst [20]. Among these approaches, the dipole/HOMO-controlled reactions of electron-deficient alkenes are especially promising because a variety of combinations between chiral Lewis acids and electron-deficient alkenes have been well investigated in the study of catalyzed enantioselective Diels-Alder reactions. Enantioselectivities in catalyzed nitrone cydoadditions sometimes exceed 90% ee, but the efficiency of catalytic loading remains insufficient. [Pg.268]

The use of catalysts for a Diels-Alder reaction is often not necessary, since in many cases the product is obtained in high yield in a reasonable reaction time. In order to increase the regioselectivity and stereoselectivity (e.g. to obtain a particular endo- or exo-product), Lewis acids as catalysts (e.g. TiCU, AICI3, BF3-etherate) have been successfully employed." The usefulness of strong Lewis acids as catalysts may however be limited, because they may also catalyze polymerization reactions of the reactants. Chiral Lewis acid catalysts are used for catalytic enantioselective Diels-Alder reactions. ... [Pg.93]

Asymmetric induction in the intermolecular Diels-Alder cycloaddition reactions can be achieved with chirally modified dienes and dienophiles as well as with chiral Lewis-acid catalysts [54-56]. [Pg.116]

Chiral Lewis acids supported on silica gel and alumina, and their use as catalysts in Diels-Alder reactions of methacrolein and bromoacrolein [103]... [Pg.133]

Dias L. C. Chiral Lewis Acid Catalysts in Diels-Alder Cycloadditions Mechanistic Aspects and Synthetic Applications of Recent Systems J. Braz. Chem. Soc. 1997 8 289-332... [Pg.311]


See other pages where Diels chiral Lewis-acids is mentioned: [Pg.32]    [Pg.101]    [Pg.177]    [Pg.4]    [Pg.5]    [Pg.6]    [Pg.9]    [Pg.15]    [Pg.18]    [Pg.25]    [Pg.25]    [Pg.26]    [Pg.151]    [Pg.186]    [Pg.187]    [Pg.191]    [Pg.203]    [Pg.207]    [Pg.121]   
See also in sourсe #XX -- [ Pg.100 ]




SEARCH



Asymmetric aza Diels-Alder reactions synthesis of tetrahydroquinoline derivatives using a chiral lanthanide Lewis acid as catalyst

Chiral Lewis acids

Chiral acids

Diels Chiral Lewis acid catalyzed

Diels acid

Diels-Alder reactions chiral Lewis acids

Hetero Diels-Alder reaction chiral Lewis acids

Lewis chiral

© 2024 chempedia.info