Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction chiral Lewis acids

Intramolecular versions of the ene reaction using Lewis acids can be applied to nonconjugated dienes. Thus, 2.8-dienoic acid derivatives lead to cyclohexane systems27. Side products in this conversion stem from intramolecular hetero-Diels-Alder cycloaddition. Chiral Lewis acids, such as titanium alkoxidcs modified with tartaric acid derived chiral diols, lead to asymmetric induction with up to 98% ee27,88. [Pg.403]

Keywords bis(oxazoiine) copper complexes, Lewis-acid catalysts for carbo-cyclic and hefero-Diels-Alder reaction, chiral synthesis... [Pg.304]

Nishiyama H., Motoyama Y. Other Transition Metal Reagents Chiral Transition-Metal Lewis Acid Catalysis for Asymmetric Organic Synthesis in Lewis Acid Reagents 1999 225, Ed Yamamoto H., Pb. Oxford Univ. Press, Oxford Keywords asymmetric Diels-Alder reactions, chiral transition metal Lewis-acid catalysis, asymmetric synthesis... [Pg.305]

Diels-Alder Reactions. Chiral a,p-unsaturated imides participate in Lewis acid-promoted Diels-Alder cycloaddition reactions to afford products in uniformly excellent endo/exo and endo diastereoselectivities (eq 50 and 51). Unfortunately, this reaction does not extend to certain dienophiles, including methacryloyl imides, p,3-dimethylacryloyl imides, or alkynic imides. Cycloadditions also occur with less reactive acyclic dienes with high diastereoselectivity (eq 52). Of the auxiliaries surveyed, the phenylalanine-derived oxazolidinones provided the highest diastereoselectivities. This methodology has been recently extended to complex intramolecular processes (eq 53). In this case, use of the unsubstituted achiral oxazolidinone favored the undesired diastereomer. [Pg.64]

The first example of enantioselective catalysis of a Diels-Alder reaction was reported in 1979 . Since then, an extensive set of successful chiral Lewis-acid catalysts has been prepared. Some selected examples will be presented here together with their mechanistic interpretation. For a more complete... [Pg.77]

Catalytic asymmetric Diels-Alder reactions are presented by Hayashi, who takes as the starting point the synthetically useful breakthrough in 1979 by Koga et al. The various chiral Lewis acids which can catalyze the reaction of different dieno-philes are presented. Closely related to the Diels-Alder reaction is the [3-1-2] carbo-cyclic cycloaddition of palladium trimethylenemethane with alkenes, discovered by Trost and Chan. In the second chapter Chan provides some brief background information about this class of cycloaddition reaction, but concentrates primarily on recent advances. The part of the book dealing with carbo-cycloaddition reactions is... [Pg.2]

Catalytic enantioselective hetero-Diels-Alder reactions are covered by the editors of the book. Chapter 4 is devoted to the development of hetero-Diels-Alder reactions of carbonyl compounds and activated carbonyl compounds catalyzed by many different chiral Lewis acids and Chapter 5 deals with the corresponding development of catalytic enantioselective aza-Diels-Alder reactions. Compared with carbo-Diels-Alder reactions, which have been known for more than a decade, the field of catalytic enantioselective hetero-Diels-Alder reactions of carbonyl compounds and imines (aza-Diels-Alder reactions) are very recent. [Pg.3]

Gothelf presents in Chapter 6 a comprehensive review of metal-catalyzed 1,3-di-polar cycloaddition reactions, with the focus on the properties of different chiral Lewis-acid complexes. The general properties of a chiral aqua complex are presented in the next chapter by Kanamasa, who focuses on 1,3-dipolar cycloaddition reactions of nitrones, nitronates, and diazo compounds. The use of this complex as a highly efficient catalyst for carbo-Diels-Alder reactions and conjugate additions is also described. [Pg.3]

Asymmetric Diels-Alder reactions using a dienophile containing a chiral auxiliary were developed more than 20 years ago. Although the auxiliary-based Diels-Alder reaction is still important, it has two drawbacks - additional steps are necessary, first to introduce the chiral auxiliary into the starting material, and then to remove it after the reaction. At least an equimolar amount of the chiral auxiliary is, moreover, necessary. After the discovery that Lewis acids catalyze the Diels-Alder reaction, the introduction of chirality into such catalysts has been investigated. The Diels-Alder reaction utilizing a chiral Lewis acid is truly a practical synthetic transformation, not only because the products obtained are synthetically useful, but also because a catalytic amount of the chiral component can, in theory, produce a huge amount of the chiral product. [Pg.4]

The Chiral Lewis Acid-catalyzed Diels-Alder Reaction 7... [Pg.7]

The Chiral Lewis Acid-catalyzed Diels-Alder Reaction 9 Fig. 1.1 CAB catalyst 3 and methacrolein Me... [Pg.9]

To overcome these problems with the first generation Brmsted acid-assisted chiral Lewis acid 7, Yamamoto and coworkers developed in 1996 a second-generation catalyst 8 containing the 3,5-bis-(trifluoromethyl)phenylboronic acid moiety [10b,d] (Scheme 1.15, 1.16, Table 1.4, 1.5). The catalyst was prepared from a chiral triol containing a chiral binaphthol moiety and 3,5-bis-(trifluoromethyl)phenylboronic acid, with removal of water. This is a practical Diels-Alder catalyst, effective in catalyzing the reaction not only of a-substituted a,/ -unsaturated aldehydes, but also of a-unsubstituted a,/ -unsaturated aldehydes. In each reaction, the adducts were formed in high yields and with excellent enantioselectivity. It also promotes the reaction with less reactive dienophiles such as crotonaldehyde. Less reactive dienes such as isoprene and cyclohexadiene can, moreover, also be successfully employed in reactions with bromoacrolein, methacrolein, and acrolein dienophiles. The chiral ligand was readily recovered (>90%). [Pg.13]

Brmsted acid-assisted chiral Lewis acid 8 was also applied to the intramolecular Diels-Alder reaction of an a-unsubstituted triene derivative. ( , )-2,7,9-Decatrienal reacts in the presence of 30 mol% of the catalyst to afford the bicyclo compound in high yield and good enantioselectivity [lOd] (Scheme 1.17). [Pg.14]

With few exceptions chiral Lewis acids are usually moisture-sensitive and require anhydrous conditions, but bench-stable aquo complexes such as [Cu(S,S)-t-Bu-box)(H20)2](SbF6)2 were found to promote the Diels-Alder reaction as effectively as the anhydrous copper reagent. [Pg.28]

A great advantage of catalyst 24b compared with other chiral Lewis acids is that it tolerates the presence of ester, amine, and thioether functionalities. Dienes substituted at the 1-position by alkyl, aryl, oxygen, nitrogen, or sulfur all participate effectively in the present asymmetric Diels-Alder reaction, giving adducts in over 90% ee. The reaction of l-acetoxy-3-methylbutadiene and acryloyloxazolidinone catalyzed by copper reagent 24b, affords the cycloadduct in 98% ee. The first total synthesis of ewt-J -tetrahydrocannabinol was achieved using the functionalized cycloadduct obtained [23, 33e] (Scheme 1.39). [Pg.29]

Since Evans s initial report, several chiral Lewis acids with copper as the central metal have been reported. Davies et al. and Ghosh et al. independently developed a bis(oxazoline) ligand prepared from aminoindanol, and applied the copper complex of this ligand to the asymmetric Diels-Alder reaction. Davies varied the link between the two oxazolines and found that cyclopropyl is the best connector (see catalyst 26), giving the cycloadduct of acryloyloxazolidinone and cyclopentadiene in high optical purity (98.4% ee) [35] (Scheme 1.45). Ghosh et al., on the other hand, obtained the same cycloadduct in 99% ee by the use of unsubstituted ligand (see catalyst 27) [36] (Scheme 1.46, Table 1.19). [Pg.32]


See other pages where Diels-Alder reaction chiral Lewis acids is mentioned: [Pg.264]    [Pg.245]    [Pg.352]    [Pg.352]    [Pg.361]    [Pg.159]    [Pg.502]    [Pg.32]    [Pg.94]    [Pg.101]    [Pg.175]    [Pg.177]    [Pg.4]    [Pg.5]    [Pg.9]    [Pg.15]    [Pg.18]    [Pg.20]    [Pg.23]    [Pg.25]    [Pg.25]    [Pg.26]    [Pg.34]   
See also in sourсe #XX -- [ Pg.2 , Pg.654 ]

See also in sourсe #XX -- [ Pg.2 , Pg.654 ]




SEARCH



Chiral Lewis acids

Chiral acids

Chirality Diels-Alder reaction

Diels acid

Diels chiral Lewis-acids

Diels-Alder reaction acids

Lewis acids Diels-Alder reaction

Lewis chiral

Lewis reactions

Reactions chiral

© 2024 chempedia.info