Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction micellar

What is the effect of micelles on the aqueous Diels-Alder reaction Can micellar catalysis be combined with Lewis-acid catalysis In Chapter 5 these aspects will discussed. [Pg.32]

Analogously, the effect of micelles on the rate of the unimolecular retro Diels-Alder reaction has been studied. Also here only a modest retardation" or acceleration" is observed. Likewise, the presence of micelles has been reported to have a modest influence on an intramolecular Diels-Alder reaction . Studies on the endo-exo selectivity of a number of different Diels-Alder reactions in micellar media lead to comparable conclusions. Endo-exo selectivities tend to be somewhat smaller in micellar solutions than in pure water, but still are appreciably larger than those in organic media In contrast, in microemulsions the endo-exo selectivity is reduced significantly" ... [Pg.132]

This chapter describes the effects of micelles on the Diels-Alder reaction of compounds 5,1 a-g (see Scheme 5.1) with cyclopentadiene (5.2). As far as we know, our study is the first detailed kinetic analysis of micellar catalysis of a Diels-Alder reaction. [Pg.132]

In this section the influence of micelles of cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS) and dodecyl heptaoxyethylene ether (C12E7) on the Diels-Alder reaction of 5.1a-g with 5.2 in the absence of Lewis-add catalysts is described (see Scheme 5.1). Note that the dienophiles can be divided into nonionic (5.1a-e), anionic (5.If) and cationic (5.1g) species. A comparison of the effect of nonionic (C12E7), anionic (SDS) and cationic (CTAB) micelles on the rates of their reaction with 5.2 will assess of the importance of electrostatic interactions in micellar catalysis or inhibition. [Pg.133]

Interestingly, at very low concentrations of micellised Qi(DS)2, the rate of the reaction of 5.1a with 5.2 was observed to be zero-order in 5.1 a and only depending on the concentration of Cu(DS)2 and 5.2. This is akin to the turn-over and saturation kinetics exhibited by enzymes. The acceleration relative to the reaction in organic media in the absence of catalyst, also approaches enzyme-like magnitudes compared to the process in acetonitrile (Chapter 2), Cu(DS)2 micelles accelerate the Diels-Alder reaction between 5.1a and 5.2 by a factor of 1.8710 . This extremely high catalytic efficiency shows how a combination of a beneficial aqueous solvent effect, Lewis-acid catalysis and micellar catalysis can lead to tremendous accelerations. [Pg.143]

Another consequence of the above analysis is, that the surprising inefficiency of micellar aggregates to catalyse Diels-Alder reactions can now be rationalised. Obviously, micelles are able to bind diene and dienophile efficiently but in different parts of the micelle. The reactions seems to take place at the surface of the micelle in a rather aqueous environment, where the concentration of diene is low. [Pg.153]

Finally, in Chapter 5, micellar catalysis of Diels-Alder reactions is discussed. In view of the nonpolar nature of most Diels-Alder reactants, efficient micellar catalysis of this reaction was anticipated However, this has not been observed. The results for the Diels-Alder reaction between cyclopentadiene and substituted 3-phenyl-l-(2-pyridyl)-2-propene-l-one dienophiles, discussed in... [Pg.162]

In summary, the work in this thesis provides an overview of what can be achieved with Lewis-acid and micellar catalysis for Diels-Alder reactions in water as exemplified by the reaction of3-phenyl-l-(2-pyridyl)-2-propene-l-ones with cyclopentadiene. Extension of the observed beneficial effect of water on rates and particularly enantioselectivities to other systems is envisaged. [Pg.163]

Chapter 5 describes a study of the effect of micelles on the Diels-Alder reaction of 1 with 2. Literature studies on micellar catalysis of Diels-Alder reactions invariably failed to reveal significant accelerations. These results are unexpected, since most Diels-Alder reactants have a high affinity for... [Pg.177]

In contrast to SDS, CTAB and C12E7, CufDSjz micelles catalyse the Diels-Alder reaction between 1 and 2 with enzyme-like efficiency, leading to rate enhancements up to 1.8-10 compared to the reaction in acetonitrile. This results primarily from the essentially complete complexation off to the copper ions at the micellar surface. Comparison of the partition coefficients of 2 over the water phase and the micellar pseudophase, as derived from kinetic analysis using the pseudophase model, reveals a higher affinity of 2 for Cu(DS)2 than for SDS and CTAB. The inhibitory effect resulting from spatial separation of la-g and 2 is likely to be at least less pronoimced for Cu(DS)2 than for the other surfactants. [Pg.178]

Micellar medium has received great attention because it solubilizes, concentrates and orientates the reactants within the micelle core and in this way accelerates the reaction and favors the regio- and stereoselectivity of the process [68], In addition the micellar medium is cheap, can be reused, is more versatile than cyclodextrins and more robust than enzymes. With regard to Diels Alder reactions, we may distinguish between (i) those in which one or both reagents are surfactants which make up the micellar medium, and (ii) those that are carried out in a micellar medium prepared by a suitable surfactant. [Pg.174]

The cycloadditions of cyclopentadiene 1 and its spiro-derivatives 109 and 110 with quinones 52, 111 and 112 (Scheme 4.20), carried out in water at 30 °C in the presence of 0.5% mol. of cetyltrimethylammonium bromide (CTAB), gave the endo adduct in about 3 h with good yield [72b]. With respect to the thermal Diels-Alder reaction, the great reaction rate enhancement in micellar medium (Scheme 4.20) can be ascribed to the increased concentration of the reactants in the micellar pseudophase where they are also more ordered. [Pg.176]

Table 4.16 Micellar catalysis of Diels-Alder reactions of cyclopentadiene (1) with 3-(p-substituted phenyl)- -(2-propen-1-one (113) in water at 25 °C. Relative rate constants ( rei) to the reactions performed in sole water... Table 4.16 Micellar catalysis of Diels-Alder reactions of cyclopentadiene (1) with 3-(p-substituted phenyl)- -(2-propen-1-one (113) in water at 25 °C. Relative rate constants ( rei) to the reactions performed in sole water...
The Diels-Alder reaction of nonyl acrylate with cyclopentadiene was used to investigate the effect of homochiral surfactant 114 (Figure 4.5) on the enantioselectivity of the reaction [77]. Performing the reaction at room temperature in aqueous medium at pH 3 and in the presence of lithium chloride, a 2.2 1 mixture of endo/exo adducts was obtained with 75% yield. Only 15% of ee was observed, which compares well with the results quoted for Diels-Alder reactions in cyclodextrins [65d]. Only the endo addition was enantioselective and the R enantiomer was prevalent. This is the first reported aqueous chiral micellar catalysis of a Diels-Alder reaction. [Pg.179]

Chiral surfactants have been used in the aqueous chiral micellar catalysis of a Diels-Alder reaction using an (5)-leucine-derived surfactant (Figure 12.4) to catalyze the reaction between cyclopentadiene and nonyl acrylate.65... [Pg.389]

Much effort has been directed at developing aqueous Diels-Alder reactions toward the syntheses of a variety of complex natural products. Grieco employed micellar catalysis and pure water as the solvent for the Diels-Alder reaction of dienecarboxylate with a variety of dienophiles. For example, when the Diels-Alder reaction in Scheme 12.3 was carried out in water, a higher reaction rate and reversal of the selectivity were observed, compared with the same reaction in a hydrocarbon solvent (Scheme 12.3).81 Similarly, the reaction of 2,6-dimethylbenzoquinone with sodium ( )-3,5-hexadienoate (generated in situ by the addition of 0.95 equiv sodium bicarbonate to a suspension of the precursor acid in water) proceeded for 1 hour to give a 77% yield of the adduct... [Pg.393]

In this chapter we wish to review the collected evidence for the astonishing effects of water on reactivities and selectivities as exemplified by the Diels-Alder reactions of dienes. Examples of Lewis acid and micellar catalysis in aqueous media are also presented. Finally, the newest computational investigations including solvent effects on Diels-Alder reactions are put forward in order to rationalize some of the remarkable observations. [Pg.1032]

In subsequent studies it has been found that a combination of Lewis-acid and micellar catalysis can lead to huge (in fact, enzyme like) rate acceleration in water. In the absence of Lewis-acid catalysts, micelles tend to inhibit Diels-Alder reactions, largely because of the particular nature of the substrate binding sites at the micelle. This problem can be solved by adding Lewis-acid catalysts that bind effectively at the micellar surface. [Pg.160]

Micellar catalysis, conducted in the absence of Lewis acid tends to inhibit the Diels-Alder reaction, relative to the reaction in water. The reason is that the local reaction medium in the Stern region is less favorable than bulk water. However, by combining Lewis-acid and micellar catalysis, enzyme-hke rate accelerations can be obtained (Table 7.5) in case the Lewis acid acts as the counterion for the miceUe. " ... [Pg.168]

Lewis-acid catalysis of Diels-Alder reactions involving bidentate dienophiles in water is possible also if the beneficial effect of water on the catalyzed reaction is reduced relative to pure water. There are no additional effects on endo-exo selectivity. As expected, catalysis by Cu ions is much more efficient than specific-acid catalysis.Using a-amino acids as chiral ligands, Lewis-acid enan-tioselectivity is enhanced in water compared to organic solvents. Micelles, in the absence of Lewis acids, are poor catalysts, but combining Lewis-acid catalysis and micellar catalysis leads to a rate accelaration that is enzyme-like. [Pg.169]

Grieco, P. A. Giamer, P. He, Z.-M. "Micellar" catalysis in the aqueous intermolecular Diels-Alder reaction Rate acceleration and enhanced selectivity, Tetrahedron Lett. 1983, 24,1897-1900. [Pg.497]


See other pages where Diels-Alder reaction micellar is mentioned: [Pg.125]    [Pg.125]    [Pg.131]    [Pg.132]    [Pg.134]    [Pg.141]    [Pg.142]    [Pg.177]    [Pg.178]    [Pg.591]    [Pg.1066]    [Pg.1068]    [Pg.1080]    [Pg.1081]    [Pg.10]    [Pg.28]    [Pg.28]    [Pg.70]    [Pg.448]    [Pg.591]    [Pg.561]    [Pg.1068]   
See also in sourсe #XX -- [ Pg.476 ]

See also in sourсe #XX -- [ Pg.476 ]




SEARCH



Diels-Alder reactions micellar catalysis

Micellar reactions

© 2024 chempedia.info