Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder nitration

The rate of the uncatalysed reaction in all four solvents is rather slow. (The half-life at [2.5] = 1.00 mM is at least 28 hours). However, upon complexation of Cu ion to 2.4a-g the rate of the Diels-Alder reaction between these compounds and 2.5 increases dramatically. Figure 2.2 shows the apparent rate of the Diels-Alder reaction of 2.4a with 2.5 in water as a lunction of the concentration of copper(II)nitrate. At higher catalyst concentrations the rate of the reaction clearly levels off, most likely due to complete binding of the dienophile to the catalyst. Note that in the kinetic experiments... [Pg.53]

In the previous section efficient catalysis of the Diels-Alder reaction by copper(II)nitrate was encountered. Likewise, other bivalent metal ions that share the same row in the periodic system show catalytic activity. The effects of cobalt(II)nitrate, nickel(II)nitrate, copper(II)nitrate and zinc(ll)nitrate... [Pg.56]

As anticipated from the complexation experiments, reaction of 4.42 with cyclopentadiene in the presence of copper(II)nitrate or ytterbium triflate was extremely slow and comparable to the rate of the reaction in the absence of Lewis-acid catalyst. Apparently, Lewis-acid catalysis of Diels-Alder reactions of p-amino ketone dienophiles is not practicable. [Pg.115]

Note that for 4.42, in which no intramolecular base catalysis is possible, the elimination side reaction is not observed. This result supports the mechanism suggested in Scheme 4.13. Moreover, at pH 2, where both amine groups of 4.44 are protonated, UV-vis measurements indicate that the elimination reaction is significantly retarded as compared to neutral conditions, where protonation is less extensive. Interestingy, addition of copper(II)nitrate also suppresses the elimination reaction to a significant extent. Unfortunately, elimination is still faster than the Diels-Alder reaction on the internal double bond of 4.44. [Pg.116]

Fortunately, in the presence of excess copper(II)nitrate, the elimination reaction is an order of magnitude slower than the desired Diels-Alder reaction with cyclopentadiene, so that upon addition of an excess of cyclopentadiene and copper(II)nitrate, 4.51 is converted smoothly into copper complex 4.53. Removal of the copper ions by treatment with an aqueous EDTA solution afforded in 71% yield crude Diels-Alder adduct 4.54. Catalysis of the Diels-Alder reaction by nickel(II)nitrate is also... [Pg.116]

The most notable chemistry of the biscylopen-tadienyls results from the aromaticity of the cyclopentadienyl rings. This is now far too extensively documented to be described in full but an outline of some of its manifestations is in Fig. 25.14. Ferrocene resists catalytic hydrogenation and does not undergo the typical reactions of conjugated dienes, such as the Diels-Alder reaction. Nor are direct nitration and halogenation possible because of oxidation to the ferricinium ion. However, Friedel-Crafts acylation as well as alkylation and metallation reactions, are readily effected. Indeed, electrophilic substitution of ferrocene occurs with such facility compared to, say, benzene (3 x 10 faster) that some explanation is called for. It has been suggested that. [Pg.1109]

Dinitromphtkaiene (2,3-DNN). Yei needies from MeOH, mp 170.5-1.0° (Refs 8 23) CA Registry No 1875-634. It is prepd by bromination of 5,6-dinitro-1,2,3,4-tetrahydro-naphthalene followed by dehydrohalogenation (Ref 23) or by nitration of a naphthalene-hexachlorocyclopentadiene adduct (Diels-Alder), followed by pyrolysis to regenerate the 2,3-DNN (Ref 58)... [Pg.194]

Dihydropyrans [71] and 4-dihydropyranones [72] have been prepared by BF3 or Me2AlCl catalyzed Diels-Alder reactions of alkyl and aryl aldehydes with dienes 72 and 73 (Equations 3.20 and 3.21). Allylic bis-silanes are useful building blocks for synthesizing molecules of biological interest [73], 4-Pyra-nones have been obtained by cerium ammonium nitrate (CAN) oxidation of the cycloadducts. [Pg.122]

Today microemulsions are used in catalysis, preparation of submicron particles, solar energy conversion, extraction of minerals and protein, detergency and lubrication [58]. Most studies in the field of basic research have dealt with the physical chemistry of the systems themselves and only recently have microemulsions been used as a reaction medium in organic synthesis. The reactions investigated to date include nucleophilic substitution and additions [59], oxidations [59-61], alkylation [62], synthesis of trialkylamines [63], coupling of aryl halides [64], nitration of phenols [65], photoamidation of fluoroolefins [66] and some Diels-Alder reactions. [Pg.281]

Release and Reactivity of tf-o-QMs Although the r 2-o-QM Os complexes 11 are stable when exposed to air or dissolved in water, the quinone methide moiety can be released upon oxidation (Scheme 3.8).16 For example, reaction of the Os-based o-QM 12 with 1.5 equivalents of CAN (ceric ammonium nitrate) in the presence of an excess of 3,4-dihydropyran led to elimination of free o-QM and its immediate trapping as the Diels-Alder product tetrahydropyranochromene, 14. Notably, in the absence of the oxidizing agent, complex 12 is completely unreactive with both electron-rich (dihydropyran) and electron-deficient (A-methylmaleimide) dienes. [Pg.73]

The use of cerium(IV) ammonium nitrate (CAN) as a catalyst for an aza-Diels-Alder reaction was reported in two different publications. In one report Perumal and co-workers react a variety of anilines 86 and aldehydes 87 with enamine 88 in the presence of 5 mol% CAN to form a series of tetrahydroquinolines 89. The reactions were performed at room temperature with very short reaction times and in good yields. In addition, the resulting tetrahydroquinolines could be oxidized to the corresponding substituted quinolines using 2.5 eq of CAN in high yields <06TL3589>. [Pg.326]

Diels-Alder reactions are one of the most famous examples which are accderated by a Lewis acid. Various water-stable Lewis adds such as Ln(OTf)3,1371 methylrhenium trioxide,1381 copper nitrate,1391 copper bis(dodecyl sulfate) (4b),1401 indium chloride,1411 and bismuth triflate1421 have been used for Diels-Alder and aza-Diels-Alder reactions in water. Furthermore, a catalytic asymmetric Dids-Alder reaction in water using a copper complex of an amino... [Pg.11]

Corey s retrosynthetic concept (Scheme 9) is based on two key transformations a cationic cyclization and an intramolecular Diels-Alder (IMDA) reaction. Thus, cationic cychzation of diene 50 would give a precursor 49 for epf-pseudo-pteroxazole (48), which could be converted into 49 via nitration and oxazole formation. Compound 50 would be obtained by deamination of compound 51 and subsequent Wittig chain elongation. A stereocontroUed IMDA reaction of quinone imide 52 would dehver the decaline core of 51. IMDA precursor 52 should be accessible by amide couphng of diene acid 54 and aminophenol 53 followed by oxidative generation of the quinone imide 52 [28]. [Pg.21]

For the synthesis of carazostatin (247), the required arylamine 708 was synthesized starting from 1-methoxycyclohexa-l, 3-diene (710) and methyl 2-decynoate (711). The key step in this route is the Diels-Alder cycloaddition of 710 and 711, followed by retro-Diels-Alder reaction with extrusion of ethylene to give 2-heptyl-6-methoxybenzoate (712). Using a three-step sequence, the methoxy-carbonyl group of compound 712 was transformed to the methyl group present in the natural product. 3-Heptyl-3-methylanisole (713) was obtained in 85% overall yield. Finally, the anisole 713 was transformed to the arylamine 708 by nitration and subsequent catalytic hydrogenation. This simple sequence provides the arylamine 708 in six steps and with 26% overall yield (597,598) (Scheme 5.66). [Pg.233]

The Diels-Alder reaction is an important and widely used reaction in organic synthesis (Sauer and Sustmann, 1980), and in the chemical industry (Griffiths and Previdoli, 1993). Rate enhancement of this reaction has been achieved by the use of solvents such as water, surfactants, very high pressure, lithium amides, alkylammonium nitrate salts, and macrocyclic hosts (Sherman et ak, 1998). Diels-Alder reactions can be ran in neutral ionic liquids (such as 1-butyl-3-methylimidazolium trifluoromethanesulfo-nate, l-butyl-3-methylimidazolium hexafluorophophate, l-butyl-3-methylimidazolium tetrafluoroborate, and l-butyl-3-methylimidazolium lactate). Rate enhancements and selectivities are similar to those of reactions performed in lithium perchlorate-diethyl ether mixtures. [Pg.173]

Diels-Alder diene + alkene/alkyne decarboxylation lose C02 from a carboxylic acid hydroxylation add -OH nitration add -N02... [Pg.3]


See other pages where Diels-Alder nitration is mentioned: [Pg.550]    [Pg.678]    [Pg.773]    [Pg.167]    [Pg.80]    [Pg.380]    [Pg.122]    [Pg.64]    [Pg.50]    [Pg.67]    [Pg.647]    [Pg.550]    [Pg.678]    [Pg.773]    [Pg.476]    [Pg.476]    [Pg.404]    [Pg.44]    [Pg.57]    [Pg.647]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Catalysis copper nitrate, in Diels-Alder

© 2024 chempedia.info