Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diblock copolymers, formation

Heating (III) in the presence of another monomer leads to diblock copolymer formation... [Pg.185]

The model has also been found to work well in describing the mechanics of the interface between the semicrystalline polymers polyamide 6 and polypropylene coupled by the in-situ formation of a diblock copolymer at the interface. The toughness in this system was found to vary as E- where E was measured after the sample was fractured (see Fig. 8). The model probably applied to this system because the failure occurred by the formation and breakdown of a primary craze in the polypropylene [14],... [Pg.231]

A very specific surface structure is observed after the annealing of a PS/polybuta-diene (PB) diblock copolymer, PS-b-PB, shown in Fig. 7 b. The surface is very smooth directly after preparation of the film from solution (similar to Fig. 7 a). By annealing at 120 °C the surface structure shown in Fig. 7 b evolves, which we believe is due to the formation of layers of PS and PB parallel to the surface. The outermost layer might not be completely filled due to lack of material leading to steps at the surface. Similar behavior is observed with other diblock copolymers such as PS-b-PMMA [61]. Enrichment of one component is also observed at the surface of a polymer solution [115,116] by X-ray fluorescene and evanescent wave techniques. [Pg.382]

Fig. 7a, b. PMIM-image of (a) a poly-p-bromostyrene surface [118], (b) a PS/polybutadiene diblock copolymer, PS-b-PB, at approximately 100 fold magnification. The lateral resolution is of the order of 1 pm while the height resolution is of the order of 0.6 nm. The root-mean-square roughness averaged over the area shown is 0.8 nm in (a) close to the resolution limit of the technique. It is much larger (10 nm) in (b) due to the formation of steps after annealing. The scale in z-direction in (a) and (b) is different by a factor of 7... [Pg.383]

Several studies have been performed to investigate the compatibalizing effect of blockcopolymers [67,158, 188,196-200], It is generally shown that the diblock copolymer concentration is enhanced at the interface between incompatible components when suitable materials are chosen. Micell formation and extremely slow kinetics make these studies difficult and specific non-equilibrium starting situations are sometimes used. Diblock copolymers are tethered to the interface and this aspect is reviewed in another article in this book [14]. [Pg.391]

In 2000, the first example of ELP diblock copolymers for reversible stimulus-responsive self-assembly of nanoparticles was reported and their potential use in controlled delivery and release was suggested [87]. Later, these type of diblock copolypeptides were also covalently crossUnked through disulfide bond formation after self-assembly into micellar nanoparticles. In addition, the encapsulation of l-anilinonaphthalene-8-sulfonic acid, a hydrophobic fluorescent dye that fluoresces in hydrophobic enviromnent, was used to investigate the capacity of the micelle for hydrophobic drugs [88]. Fujita et al. replaced the hydrophilic ELP block by a polyaspartic acid chain (D ). They created a set of block copolymers with varying... [Pg.88]

The formation of nanopattemed functional surfaces is a recent topic in nanotechnology. As is widely known, diblock copolymers, which consist of two different types of polymer chains cormected by a chemical bond, have a wide variety of microphase separation structures, such as spheres, cylinders, and lamellae, on the nanoscale, and are expected to be new functional materials with nanostructures. Further modification of the nanostructures is also useful for obtaining new functional materials. In addition, utilization of nanopartides of an organic dye is also a topic of interest in nanotechnology. [Pg.203]

Figure 11.8 Formation of ordered nanoparticles of metal from diblock copolymer micelles, (a) Diblock copolymer (b) metal salt partition to centres of the polymer micelles (c) deposition of micelles at a surface (d) micelle removal and reduction of oxide to metal, (e) AFM image of carbon nanotubes and cobalt catalyst nanoparticles after growth (height scale, 5 nm scan size, lxl pm). [Part (e) reproduced from Ref. 47]. Figure 11.8 Formation of ordered nanoparticles of metal from diblock copolymer micelles, (a) Diblock copolymer (b) metal salt partition to centres of the polymer micelles (c) deposition of micelles at a surface (d) micelle removal and reduction of oxide to metal, (e) AFM image of carbon nanotubes and cobalt catalyst nanoparticles after growth (height scale, 5 nm scan size, lxl pm). [Part (e) reproduced from Ref. 47].
Arimura H, Ohya Y, Ouchi T (2005) Formation of core-shell type biodegradable polymeric micelles from amphiphilic poly(aspartic acid)-Wock-polylactide diblock copolymer. Biomacromolecules 6 720-725... [Pg.58]

Liu et al. prepared palladium nanoparticles in water-dispersible poly(acrylic acid) (PAA)-lined channels of diblock copolymer microspheres [47]. The diblock microspheres (mean diameter 0.5 pm) were prepared using an oil-in-water emulsion process. The diblock used was poly(t-butylacrylate)-Wock-poly(2-cinna-moyloxyethyl) methacrylate (PtBA-b-PCEMA). Synthesis of the nanoparticles inside the PAA-lined channels of the microspheres was achieved using hydrazine for the reduction of PdCl2, and the nanoparticle formation was confirmed from TEM analysis and electron diffraction study (Fig. 9.1). The Pd-loaded microspheres catalyzed the hydrogenation of methylacrylate to methyl-propionate. The catalytic reactions were carried out in methanol as solvent under dihydro-... [Pg.221]

As a final example of catalytic hydrogenation activity with polymer-stabilized colloids, the studies of Cohen et al. should be mentioned [53]. Palladium nanoclusters were synthesized within microphase-separated diblock copolymer films. The organometallic repeat-units contained in the polymer were reduced by exposing the films to hydrogen at 100 °C, leading to the formation of nearly monodisperse Pd nanoclusters that were active in the gas phase hydrogenation of butadiene. [Pg.224]

Homogeneous melt, Todt < Tc > Tg. In diblock copolymers exhibiting homogeneous melts, microphase separation is driven by crystallization if Tg of the amorphous block is lower than Tc of the crystallizable block. This generally results in a lamellar morphology where crystalline lamellae are sandwiched by the amorphous block layers and spherulite formation can be observed depending on the composition [6-10]. [Pg.16]

Ueda et al. [26] recently investigated a flow-oriented PE-fr-aPP diblock copolymer with Mw = 113 000 (Mn/Mw = 1.1) and a PE volume fraction of 0.48. This diblock copolymer is in the strong segregation regime (i.e., estimated xN = 10.5 and Todt = 290 °C) and has a lamellar morphology in the melt. They found a breakout phenomenon with the formation of spherulites in an intermediate crystallization temperature range 95 < Tc < 101 °C. At crystallization temperatures above 101 °C or below 95 °C spherulites were not formed and the crystallization was confined within the lamellar MD. Ueda et al. report that lamellar MD and spherulites do not co-exist when the material crystallizes from the melt which is separated in lamellar MDs. In other words, in this particular case, breakout or confined crystallization within lamellar MDs depends on the crystallization conditions. [Pg.60]

Nolte and coworkers reported on the formation of micelles with a helical superstructure from AB amphiphilic diblock copolymers prepared from an amine-end-capped polystyrene that was used as the initiator for the polymerization of various dipeptide-derived isocyanides (Fig. 16). [Pg.123]

The exclusive formation of the block copolymer has been confirmed by selective fractionation, NMR spectroscopy, and SEC analysis. For instance, the copolymerization of eCL and 6VL has been followed by SEC. Figure 2 compares the SEC chromatograms of the first PCL block and the final poly(eCL-h-6VL) diblock copolymer. The molecular weight of the macroinitiator is shifted towards higher values in close agreement with the theoretical value expected from the comonomer-to-Al(OzPr)3 molar ratio, and the MWD remains very narrow during the copolymerization process (PDI=1.10). [Pg.12]

During the last 5 years, there have been several reports of multiblock copolymer brushes by the grafting-from method. The most common substrates are gold and silicon oxide layers but there have been reports of diblock brush formation on clay surfaces [37] and silicon-hydride surfaces [38]. Most of the newer reports have utilized ATRP [34,38-43] but there have been a couple of reports that utilized anionic polymerization [44, 45]. Zhao and co-workers [21,22] have used a combination of ATRP and nitroxide-mediated polymerization to prepare mixed poly(methyl methacrylate) (PMMA)Zpolystyrene (PS) brushes from a difunctional initiator. These Y-shaped brushes could be considered block copolymers that are surface immobilized at the block junction. [Pg.130]

To make further use of the azo-initiator, tethered diblock copolymers were prepared using reversible addition fragmentation transfer (RAFT) polymerization. Baum and co-workers [51] were able to make PS diblock copolymer brushes with either PMMA or poly(dimethylacrylamide) (PDMA) from a surface immobihzed azo-initiator in the presence of 2-phenylprop-2-yl dithiobenzoate as a chain transfer agent (Scheme 3). The properties of the diblock copolymer brushes produced can be seen in Table 1. The addition of a free initiator, 2,2 -azobisisobutyronitrile (AIBN), was required in order to obtain a controlled polymerization and resulted in the formation of free polymer chains in solution. [Pg.132]


See other pages where Diblock copolymers, formation is mentioned: [Pg.747]    [Pg.667]    [Pg.773]    [Pg.747]    [Pg.667]    [Pg.773]    [Pg.595]    [Pg.11]    [Pg.3]    [Pg.8]    [Pg.156]    [Pg.30]    [Pg.22]    [Pg.27]    [Pg.83]    [Pg.228]    [Pg.47]    [Pg.182]    [Pg.221]    [Pg.42]    [Pg.84]    [Pg.86]    [Pg.109]    [Pg.131]    [Pg.132]    [Pg.151]    [Pg.155]    [Pg.178]    [Pg.189]    [Pg.189]    [Pg.50]    [Pg.398]    [Pg.96]    [Pg.131]    [Pg.133]    [Pg.151]   


SEARCH



Copolymer formation

Diblock

Diblock copolymer micelles film formation

Diblock copolymers

Micelles, formation from diblock copolymers

© 2024 chempedia.info