Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazo compounds pyrazolines

Diazo compounds react with alkenes to afford A -pyrazolines, which in turn izomerize to A -pyrazolines if there is a hydrogen atom a to the N=N bond (Scheme 54). In those cases where two possible ways of isomerization exist, the more acidic hydrogen migrates preferentially. The alkene configuration is conserved on the A -pyrazoline (stereospecificity) but the regioselectivity depends on the substituents of both the alkene and the diazo compound. [Pg.282]

There is much evidence that the mechanism" of the 1-pyrazoline reactions generally involves diradicals, though the mode of formation and detailed structure (e.g singlet vs. triplet) of these radicals may vary with the substrate and reaction conditions. The reactions of the 3 f-pyrazoles have been postulated to proceed through a diazo compound that loses N2 to give a vinylic carbene." ... [Pg.1353]

DCA reactions are an important means of synthesis of a wide variety of heterocyclic molecules, some of which are useful intermediates in multistage syntheses. Pyrazolines, which are formed from alkenes and diazo compounds, for example, can be pyrolyzed or photolyzed to give cyclopropanes. [Pg.531]

As it is known from experience that the metal carbenes operating in most catalyzed reactions of diazo compounds are electrophilic species, it comes as no surprise that only a few examples of efficient catalyzed cyclopropanation of electron-poor alkeiies exist. One of those examples is the copper-catalyzed cyclopropanation of methyl vinyl ketone with ethyl diazoacetate 140), contrasting with the 2-pyrazoline formation in the purely thermal reaction (for failures to obtain cyclopropanes by copper-catalyzed decomposition of diazoesters, see Table VIII in Ref. 6). [Pg.125]

It was demonstrated (83) that the reaction of dinitrostyrenes (28) with aryl diazo compounds RR CN2 afford nitronates (24 g) in good yields. These products contain the nitro group at the C-4 atom in the trans position with respect to the substituent at C-5 (if R =H). Since the reaction mechanism remains unknown, the direct formation of cyclic nitronates (24 g) from pyrazolines A without the intermediate formation of cyclopropanes also cannot be ruled out. [Pg.457]

Due to space limitations, it is not possible to provide a comprehensive coverage of all 1,3-dipolar cycloaddition chemistry carried out using diazo compounds over the past two decades. Rather, attention will be given to the most significant developments, including the synthesis of novel heterocyclic systems, the preparation of well-established heterocycles (such as pyrazoles and pyrazolines) with novel functionalities, as well as stereoselective cycloadditions. A discussion of the theoretical, mechanistic, and kinetic aspects of these 1,3-dipolar cycloaddition reactions will be kept to a minimum, but references to important work in these areas will be given at appropriate places. Authoritative reviews dealing with the... [Pg.540]

Other novel diazo compounds that have been subjected to 1,3-dipolar cycloaddition with activated alkenes, and that give unusually functionalized pyrazolines (Scheme 8.7), include l-diazo-3-trimethylsilylpropan-2-one (20) (49), 2-diazo-methyl-4(57/)-furanones (21) (50), methyl 2-diazo-5-methylanilino-5-oxopentano-ate (22) (51), 2-(acylamino)-2-diazoacetates (23) (51), ethyl 2-diazo-4,4,4-trichloro-3-(ethoxycarbonylamino)butyrate (24) (52), and diazopropyne (53). [Pg.546]

An interesting preparation of aliphatic diazoalkanes (R R C = N2 R, R = alkyl) involves the photolysis of 2-alkoxy-2,5-dihydro-1,3.4-oxadiazoles (see Scheme 8.49). When the photolysis is carried out in the presence of an appropriate dipolarophUe, the diazo compounds can be intercepted (prior to their further photolysis) by a [3 + 2] cycloaddition reaction (54). As an example, 2-diazopropane was intercepted with A-phenylmaleimide (54) and norbornenes (55) to give the corresponding A -pyrazolines. [Pg.547]

The (ri" -diene tricarbonyliron)-substituted diazocarbonyl compounds 25 have been found to undergo 1,3-dipolar cycloaddition with methyl acrylate in high yield, but with little or no diastereoselectivity (56). Nevertheless, the facile chromatographic separation of the diastereomeric products 26a,b and 27a,b (Scheme 8.8), permits the synthesis of pure enantiomers when optically active diazo compounds (25) [enantiomeric excess (ee) >96%] are employed. When the reaction of 25 (R = C02Et) with methyl acrylate was carried out at 70 °C, cyclopropanes instead of A -pyrazolines were formed. The enantiomerically pure... [Pg.547]

Diazomethylene)phosphoranes 33 (Scheme 8.10), which represent another type of diazocumulenes (12) are easily obtained by the oxidative ylidation of the corresponding phosphanyl(trimethylsilyl)diazomethane with CCI4. The increased stability of these compounds as compared with diazocumulenes (R2C=C=N2) is probably due to the ylidic character of the P=C bond. These diazo compounds exhibit the expected dipolar reactivity toward electron-deficient alkenes, alkynes, phosphaalkenes, and heterocumulenes (12). Thus, 33 reacts with TCNE to form A -pyrazoline 35 (60). Furthermore, 33 could be converted into the phosphonio-borate-substituted diazo compound 34, which underwent subsequent cycloaddition with electron-deficient alkenes (e.g., 34 36) (61). [Pg.549]

Diazo compounds also undergo cycloaddition with fullerenes [for reviews, see (104),(105)]. These reactions are HOMO(dipole)-LUMO(fullerene) controlled. The initial A -pyrazoline 42 can only be isolated from the reaction of diazomethane with [60]fullerene (106) (Scheme 8.12) or higher substituted derivatives of Ceo (107). Loss of N2 from the thermally labile 42 resulted in the formation of the 6,5-open 1,2-methanofullerene (43) (106). On the other hand, photolysis produced a 4 3 mixture of 43 and the 6,6-closed methanofullerene (44) (108). The three isomeric pyrazolines obtained from the reaction of [70]fullerene and diazomethane behaved analogously (109). With all other diazo compounds so far explored, no pyrazoline ring was isolated and instead the methanofullerenes were obtained directly. As a typical example, the reaction of Cgo with ethyl diazoacetate yielded a mixture of two 6,5-open diastereoisomers 45 and 46 as well as the 6,6-closed adduct 47 (110). In contrast to the parent compound 43, the ester-substituted structures 45 and 46, which are formed under kinetic control, could be thermally isomerized into 47. The fomation of multiple CPh2 adducts from the reaction of Ceo and diazodiphenylmethane was also observed (111). The mechanistic pathway that involves the extrusion of N2 from pyrazolino-fused [60]fullerenes has been investigated using theoretical methods (112). [Pg.552]

It should be noted, however, that the 1,3-dipolar cycloaddition chemistry of diazo compounds has been used much less frequently for the synthesis of natural products than that of other 1,3-dipoles. On the other hand, several recent syntheses of complex molecules using diazo substrates have utilized asymmetric induction in the cycloaddition step coupled with some known diazo transformation, such as the photochemical ring contraction of A -pyrazolines into cyclopropanes. This latter process often occurs with high retention of stereochemistry. Another useful transformation involves the conversion of A -pyrazolines into 1,3-diamines by reductive ring-opening. These and other results show that the 1,3-dipolar cycloaddition chemistry of diazo compounds can be extremely useful for stereoselective target-oriented syntheses and presumably we will see more applications of this type in the near future. [Pg.610]

The most important method for the synthesis of 3i/-pyrazoles is by 1,3-dipoIar cycloaddition between a diazo compound and an alkyne, although alkenes bearing suitable leaving groups have also been used. Other methods include the cyclization of vinyldiazo compounds, and the oxidation of pyrazolines. [Pg.3]

Alkenes substituted with potential leaving groups are masked alkynes and are thus useful alternative dipolarophiles. They react with diazo compounds, producing pyrazolines, which can undergo elimination to give 3//-pyrazoIes. [Pg.11]

Diazo compounds have been extensively used in the preparation of three-membered carbocycles either as carbene sources or as precursors for 1-pyrazolines or 3//-pyrazoles. Nitrogen extrusion from pyrazolines is particularly valuable for the synthesis of alkylcy-clopropanes, since the direct carbene route is impractical, as a matter of fact, owing to rapid intramolecular processes in alkylcarbenes. The cycloaddition of diazo compounds to unsaturated bonds to give 1-pyrazolines and 3/f-pyrazoles usually proceed in a concerted manner, and hence is stereospecific. In the subsequent nitrogen extrusion from the adducts,... [Pg.304]

Diazomethane and its simple analogs undergo cycloaddition to unsaturated compounds both directly and after conversion to carbenes. The direct cycloadditions are 1,3-dipolar for the most part and provide access to pyrazolines and pyrazoles. Intramolecular cyclizations were recognized as early as 1965 95 The two main methods used in generation of diazo compounds for subsequent intramolecular cycloaddition include thermolysis of tosylhydrazone salts and thermolysis of iminoaziridines. Decomposition of nitros-amines has also been employed. [Pg.1151]

Spontaneous isomerization of triazolines to diazo compounds can lead to addition of the latter to a second molecule of olefin, especially in the case of acrylic derivatives, resulting in a A pyrazoline, which by proto tropic rearrangement, gives the A2-compound (Scheme 149). Pyrazolines have been observed in the reactions of alkyl,67 aryl,32,282 heterocyclic,283,453 and gly-cosyl288 azides. A A pyrazoline is reported from the addition of phenyl and tosyl azides to 3,3-dimethylcyclopropene in this case the diazoimine formed by a retro-1,3-addition of the primary cyclopropanotriazoline adduct reacts with another olefin molecule.82... [Pg.322]

Pyrazolines may be obtained readily from a,j3-unsaturated aldehydes or ketones and aliphatic diazo compounds.44,349 Convenient syntheses have been worked out using Mannich bases,488-494 by the cyclization of aldehydo- and keto-azines.495-499 The conversion of a number of 4- and 5-substituted pyrazolines to the corresponding pyrazoles by frams-elimination was noted above. The 4-amino-pyrazolines with the appropriate configuration (41) readily eliminate... [Pg.384]

In the case of alkyl substituted pyrazolines such as (307), thermal decomposition at 40-70 °C or photolysis leads to complex products which could be explained either in terms of a diradical intermediate or of rearrangement to a diazo-compound followed by loss of nitrogen to produce a carbene. However, on brief heating to 80 °C or on... [Pg.189]


See other pages where Diazo compounds pyrazolines is mentioned: [Pg.150]    [Pg.73]    [Pg.10]    [Pg.294]    [Pg.166]    [Pg.109]    [Pg.252]    [Pg.541]    [Pg.542]    [Pg.543]    [Pg.592]    [Pg.610]    [Pg.521]    [Pg.522]    [Pg.523]    [Pg.572]    [Pg.590]    [Pg.261]    [Pg.304]    [Pg.953]    [Pg.1102]    [Pg.268]    [Pg.188]    [Pg.189]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



2-pyrazoline

Diazo compounds

Diazo compounds pyrazoline ring

Pyrazolinate

Pyrazolines

© 2024 chempedia.info