Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereoselectivity, model

The validity of the model was demonstrated by reacting 35 under the same reaction conditions as expected, only one diastereoisomer 41 was formed, the structure of which was confirmed by X-ray analysis. When the vinylation was carried out on the isothiazolinone 42 followed by oxidation to 40, the dimeric compound 43 was obtained, showing that the endo-anti transition state is the preferred one. To confirm the result, the vinyl derivative 42 was oxidized and the intermediate 40 trapped in situ with N-phenylmaleimide. The reaction appeared to be completely diastereoselective and a single diastereomer endo-anti 44 was obtained. In addition, calculations modelling the reactivity of the dienes indicated that the stereochemistry of the cycloaddition may be altered by variation of the reaction solvent. [Pg.76]

Whereas there are numerous examples of the application of the products from diastereoselective 1,3-dipolar cycloaddition reaction in synthesis [7, 8], there are only very few examples on the application of the products from metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction in the synthesis of potential target molecules. The reason for this may be due to the fact that most metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction have been carried out on model systems that have not been optimized for further derivatization. One exception of this is the synthesis of a / -lactam by Kobayashi and Kawamura [84]. The isoxazoli-dine endo-21h, which was obtained in 96% ee from the Yb(OTf)3-BINOL-catalyzed... [Pg.239]

To account for tlie observed diastereoselectivity, a "modified" Felfcin-Anb model has been proposed [18], Jn analogy to tlie classical Felkin-Anb model, originally developed for tlie addition of otganometallic reagents to aldeliydes possessing a... [Pg.192]

In accord with the Felkin-Anh model, a-chiral ketones react more diastereoselectively than the corresponding aldehydes. Increasing steric demand of the acyl substituent increases the Cram selectivity. Due to the size of the acyl substituent, the incoming nucleophile is pushed towards the stereogenic center and therefore the diastereoface selection becomes more effective (see also Section 1.3.1.1.). Thus, addition of methyllithium to 4-methyl-4-phenyl-3-hexanonc (15) proceeds with higher diastercoselectivity than the addition of ethyllithium to 3-methyl-3-phenyl-2-pen-tanone (14)32. [Pg.31]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

The fact that (Z)-lithium enolatcs generally display a higher simple diastereoselectivity giving. vyn-aldols compared to (E)-enolates affording nn/i-aldols is a challenge to the Zimmer-man-Traxler model, and has become the source of extended speculation. [Pg.460]

A completely different dipolar cycloaddition model has been proposed39 in order to rationalize the stereochemical outcome of the addition of doubly deprotonated carboxylic acids to aldehydes, which is known as the Ivanov reaction. In the irreversible reaction of phenylacetic acid with 2,2-dimethylpropanal, metal chelation is completely unfavorable. Thus simple diastereoselectivity in favor of u f/-adducts is extremely low when chelating cations, e.g., Zn2 + or Mg- +, are used. Amazingly, the most naked dianions provide the highest anti/syn ratios as indicated by the results obtained with the potassium salt in the presence of a crown ether. [Pg.460]

The diastereoselectivity of the copper enolate 2b may be rationalized by suggesting that the chair-like cyclic transition state J is preferred which leads to the major diastereomer 4. The usual antiperiplanar enolate geometry and equatorial disposition of the aldehyde substituent are incorporated into this model. Possible transition states consistent with the stereochemistries of the observed minor aldol products are also illustrated. [Pg.546]

The diastereoselectivity of the reaction may be rationalized by assuming a chelation model, which has been developed in the addition of Grignard reagents to enantiomerically pure a-keto acetals7,8. Cerium metal is fixed by chelation between the N-atom, the methoxy O-atom and one of the acetal O-atoms leading to a rigid structure in the transition state of the reaction (see below). Hence, nucleophilic attack from the Si-face of the C-N double bond is favored4. [Pg.727]

The model is supported by the fact that in the absence of magnesium bromide 4-methoxyben-zylmagnesium chloride reacts with nitrone 2 at 0°C in THF with an inverse diastereoselectivity [3a/3b d.r. (2R,35,4R)/(25,35,4R) 40 60]I6. [Pg.741]

For amide enolates (X = NR2), with Z geometry, model transition state D is intrinsically favored, but, again, large X substituents favor the formation of nt/-adducts via C. Factors that influence the diastereoselectivity include the solvent, the enolate counterion and the substituent pattern of enolate and enonc. In some cases either syn- or unh-products are obtained preferentially by varying the nature of the solvent, donor atom (enolate versus thioeno-late), or counterion. Most Michael additions listed in this section have not been examined systematically in terms of diastereoselectivity and coherent transition stale models are currently not available. Similar models to those shown in A-D can be used, however all the previously mentioned factors (among others) may be critical to the stereochemical outcome of the reaction. [Pg.955]

The major difference, when compared with simple diastereoselection in aldol-type additions, is the E- and Z-geometrical isomers of the Michael acceptor. Model transition state G shows one of the orientations of the enantiofaces of an (A)-enolate with a (Z)-enone. These additions, again, result in the same. vyn/an/i-adducts, as in the case of an (A)-enone, but the substituent interactions will be different. [Pg.956]

Another model can be used to predict diastereoselectivity, which assumes reactant-like transition states and that the separation of the incoming group and any electronegative substituent at the a carbon is greatest. Transition state models 45 and 46 are used to predict diastereoselectivity in what is known as the Felkin Ahn model ... [Pg.148]

The key step in the diastereoselective synthesis of model insect antifeedant 152 starting from a-cyclocitral 148 was the INOC reaction of oxime 149 or nitro alkane 150 to the isoxazoline 151 (Eq. 15) [42]. [Pg.21]

Of the various Lewis acid catalysts tested, SnCl4 gave the highest diastereoselective product formation with predominance for the antz-diastereoisomer. This azztz-selectivity can be rationalized by invoking the Cram chelation model. [Pg.118]

An attractive alternative to these novel aminoalcohol type modifiers is the use of 1-(1-naphthyl)ethylamine (NEA, Fig. 5) and derivatives thereof as chiral modifiers [45-47]. Trace quantities of (R)- or (S)-l-(l-naphthyl)ethylamine induce up to 82% ee in the hydrogenation of ethyl pyruvate over Pt/alumina. Note that naphthylethylamine is only a precursor of the actual modifier, which is formed in situ by reductive alkylation of NEA with the reactant ethyl pyruvate. This transformation (Fig. 5), which proceeds via imine formation and subsequent reduction of the C=N bond, is highly diastereoselective (d.e. >95%). Reductive alkylation of NEA with different aldehydes or ketones provides easy access to a variety of related modifiers [47]. The enantioselection occurring with the modifiers derived from NEA could be rationalized with the same strategy of molecular modelling as demonstrated for the Pt-cinchona system. [Pg.58]

If the substituents are nonpolar, such as an alkyl or aryl group, the control is exerted mainly by steric effects. In particular, for a-substituted aldehydes, the Felkin TS model can be taken as the starting point for analysis, in combination with the cyclic TS. (See Section 2.4.1.3, Part A to review the Felkin model.) The analysis and prediction of the direction of the preferred reaction depends on the same principles as for simple diastereoselectivity and are done by consideration of the attractive and repulsive interactions in the presumed TS. In the Felkin model for nucleophilic addition to carbonyl centers the larger a-substituent is aligned anti to the approaching enolate and yields the 3,4-syn product. If reaction occurs by an alternative approach, the stereochemistry is reversed, and this is called an anti-Felkin approach. [Pg.90]


See other pages where Diastereoselectivity, model is mentioned: [Pg.457]    [Pg.457]    [Pg.88]    [Pg.761]    [Pg.34]    [Pg.22]    [Pg.29]    [Pg.41]    [Pg.46]    [Pg.47]    [Pg.65]    [Pg.110]    [Pg.125]    [Pg.136]    [Pg.211]    [Pg.282]    [Pg.453]    [Pg.453]    [Pg.455]    [Pg.457]    [Pg.459]    [Pg.459]    [Pg.495]    [Pg.711]    [Pg.744]    [Pg.896]    [Pg.902]    [Pg.135]    [Pg.839]    [Pg.126]    [Pg.309]    [Pg.839]    [Pg.1085]   


SEARCH



Cation Coordination Model for Diastereoselectivity

Cieplaks Model for Diastereoselectivity

Diastereoselectivity Felkin model

© 2024 chempedia.info