Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereomeric reactions, asymmetric

Meyers has also reported the use of chiral oxazolines in asymmetric copper-catalyzed Ullmann coupling reactions. For example, treatment of bromooxazoline 50 with activated copper powder in refluxing DMF afforded binaphthyl oxazoline 51 as a 93 7 mixture of atropisomers diastereomerically pure material was obtained in 57% yield after a single recrystallization. Reductive cleavage of the oxazoline groups as described above afforded diol 52 in 88% yield. This methodology has also been applied to the synthesis of biaryl derivatives. [Pg.243]

Two- and three-component Hantzsch reactions using C-glycosylated reagents have been reported as an alternate method for conducting asymmetric syntheses of 1,4-dihydropyridines." ° Reaction of 109, 110 and 97 generate 111 with Ri = sugar. Alternatively, 112 and 113 produce 111 with Ri = sugar. While the yields were acceptable (60-90%), the diastereomeric ratio varied from 30-60%. [Pg.318]

The [2 + 2] cycloaddition reaction of A -benzyl-l,4-dihydropyridine 34b with acrylonitrile, followed by catalytic reduction gave two pairs of diastereoisomeric amides 36 and 37 with a low diastereomeric excess, probably due to the large distance between the asymmetric center and the site of acrylonitrile attack. Compounds 36 and 37 were resolved into the four individual diastereoisomers (ca 5% for compound 36 and 15% for 37) [97JCR(M)321], Irradiation of 1,4-dibenzyl-1,4,5,6-tetrahydropyridine 38 in the presence of 29 gave two stereoisomers. [Pg.277]

Asymmetric induction by sulfoxide is a very attractive feature. Enantiomerically pure cyclic a-sulfonimidoyl carbanions have been prepared (98S919) through base-catalyzed cyclization of the corresponding tosyloxyalkylsulfoximine 87 to 88 followed by deprotonation with BuLi. The alkylation with Mel or BuBr affords the diastereomerically pure sulfoximine 89, showing that the attack of the electrophile at the anionic C-atom occurs, preferentially, from the side of the sulfoximine O-atom independently from the substituent at Ca-carbon. The reaction of cuprates 90 with cyclic a,p-unsaturated ketones 91 was studied but very low asymmetric induction was observed in 92. [Pg.81]

Scheme 5 details the asymmetric synthesis of dimethylhydrazone 14. The synthesis of this fragment commences with an Evans asymmetric aldol condensation between the boron enolate derived from 21 and trans-2-pentenal (20). Syn aldol adduct 29 is obtained in diastereomerically pure form through a process which defines both the relative and absolute stereochemistry of the newly generated stereogenic centers at carbons 29 and 30 (92 % yield). After reductive removal of the chiral auxiliary, selective silylation of the primary alcohol furnishes 30 in 71 % overall yield. The method employed to achieve the reduction of the C-28 carbonyl is interesting and worthy of comment. The reaction between tri-n-butylbor-... [Pg.492]

The influence of 1,2-asymmctric induction on the exchange of diastereotopic bromine atoms has also been investigated22,23. Thus, treatment of the / -silyloxydibromo compound 15 with butyllithium at — 110°C in the presence of 2-methylpropana led to products 17-19 after the reaction mixture was warmed to 20 °C. The distribution of the products indicates that the diastereomeric lithium compounds 16 A and 16B were formed in a ratio of 84 16, with 16A being kinetically favored by 1,2-asymmetric induction. Formation of the m-configurated epoxide (cis,anti-18) was slowed to such an extent that its formation was incomplete and a substantial amount of the parent bromohydrin 17 remained. The analogous m.yyn-configurat-ed epoxide was not observed. Presumably for sterie reasons, the parent bromohydrin did not cyclize to the epoxide but instead led to the ketone 1923. [Pg.130]

The matched double asymmetric reaction of the diastereomeric aldehyde methyl (2SAS)-2.4-dimethyl-5-oxopentanoate and (otS,S,S)-5 was performed under 4kbar pressure at room temperature giving 20 as the only observed isomer. [Pg.334]

Aldol reactions of a-substituted iron-acetyl enolates such as 1 generate a stcrcogenic center at the a-carbon, which engenders the possibility of two diastereomeric aldol adducts 2 and 3 on reaction with symmetrical ketones, and the possibility of four diastereomeric aldol adducts 4, 5, 6, and 7 on reaction with aldehydes or unsymmetrical ketones. The following sections describe the asymmetric aldol reactions of chiral enolate species such as 1. [Pg.540]

More recently, the Lewis acid promoted asymmetric 1,4-addition of trimethyl(2-propenyl)silane to chiral a,/ -unsaturated /V-acylamides has been published33. Lewis acid mediated reactions of trimethyl(2-propenyl)silanes with a,/I-unsatu rated AT-acyloxazolidinones or iV-enoylsultams show high chemical yield with good diastereomeric excess. The absolute configuration of the new asymmetric center is controlled by the nature of the Lewis acid used. [Pg.942]

Asymmetric induction may also derive from chirality in the amine part of the enamine. The reaction of the enamine (S)-l-(l-cyclohexenyl)-2-(methoxymethyl)pyrrolidine with ( )-(2-ni-troethenyl)arenes gives, after hydrolysis, a single diastereomeric product in >90% ee30. [Pg.1023]

Demailly and coworkers195 found that the asymmetric induction increased markedly when optically active methyl pyridyl sulfoxide was treated with an aldehyde. They also synthesized (S)-chroman-2-carboxylaldehyde 152, which is the cyclic ring part of a-tocopherol, by aldol-type condensation of the optically active lithium salt of a,/3-unsaturated sulfoxide. Although the diastereomeric ratio of allylic alcohol 151 formed from lithium salt 149 and 150 was not determined, the reaction of 149 with salicylaldehyde gave the diastereomeric alcohol in a ratio of 28 72196. [Pg.616]

Reaction of p-nitrophenyl 2-(p-tolylsulfinyl)acetate 161 with aryl aldimines in the presence of imidazole was found to give /j-lactams 162 and amides 163206. In the cyclization, only the two 3,4-trans derivatives were formed out of a possible four diastereomeric pairs and, interestingly, the ratio of two diastereomeric pairs went up to 6.7 1. This means not only that internal asymmetric induction207 affords the trans derivative, but that also a relatively high asymmetric induction took place during the reaction. [Pg.618]

Charlton121 has recently reported the asymmetric induction in the reaction of dimethyl fumarate and l,3-dihydrobenzo[c]thiophene 2,2-dioxide (198) containing a chiral a-alkoxy group at the 2-position (equation 128). A diastereomeric excess of 2.8 1 of 199 to 200 is achieved by using 198 derived from optically active a-methylbenzyl alcohol. [Pg.805]

Reaction of 3-ketoester 2-97 and acrolein 2-98 in presence of stoichiometric amounts of 2-103 led to the desired product 2-100 in 45 % yield. A transition-state model 2-99 may be postulated assuming an ion-pairing mechanism as reported for similar asymmetric transformations [37]. The diastereomeric mixture of 2-100 was transformed into 2-101 by mesylation and subsequent elimination. Despite the moderate 64% ee determined for 2-101, it was possible to obtain optically pure 2-101 by recrystallization from hexane. [Pg.62]

The asymmetric synthesis of 2-aryl(alkyl)-l,3,2-oxazaphospholidines 52 was based on the reaction of achiral organophosphonous diamides 51 with L-ephedrine (42) (Scheme 19) [44], The diastereomeric excess ranges from 0% (R=Ph) to 95%... [Pg.113]

The first report on the reaction of D-pseudoephedrine 66 with phosphoryl chloride appeared as early as 1962 [49], More recently it was found that this condensation gave 2-chloro-l,3,2-oxazaphospholidine 2-oxides 67 as a single diastereomer which was subsequently esterified with racemic aldehyde cyanohydrins 68 without racemization at the phosphorus atom. The prepared diastereomeric esters 69 were used as substrates for the asymmetric synthesis of optically active cyanohydrins 72, which involves the intermediate formation of the tertiary esters 70, as shown in Scheme 22 [50],... [Pg.115]


See other pages where Diastereomeric reactions, asymmetric is mentioned: [Pg.909]    [Pg.992]    [Pg.106]    [Pg.241]    [Pg.160]    [Pg.103]    [Pg.247]    [Pg.229]    [Pg.141]    [Pg.330]    [Pg.47]    [Pg.523]    [Pg.791]    [Pg.926]    [Pg.133]    [Pg.216]    [Pg.185]    [Pg.117]    [Pg.14]    [Pg.88]    [Pg.3]    [Pg.30]    [Pg.190]    [Pg.344]    [Pg.482]    [Pg.455]    [Pg.252]    [Pg.327]    [Pg.565]    [Pg.247]    [Pg.332]   


SEARCH



Diastereomeric

© 2024 chempedia.info