Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deterioration thermal autoxidation

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Autoxidation is the most common process leading to oxidative deterioration and is defined as the spontaneous reaction of atmospheric oxygen with lipids (3). The process can be accelerated at higher temperatures, such as those experienced during deep-fat frying, which is called thermal oxidation, with increases in free fatty acid and polar matter contents, foaming, color, and viscosity (4). Lfnsaturated fatty acids... [Pg.399]

Another potential area of application of FTIR spectroscopy is in the determination of the oxidative status or stability of an oil. Autoxidation is a major deteriorative reaction affecting edible fats and oils, and it is of major concern to processors and consumers from the standpoint of oil quality, as the oxidative breakdown products cause marked off flavours in an oil. A wide range of end products are associated with the autoxidative deterioration of fats and oils, the most important being hydroperoxides, alcohols, and aldehydes. Moisture, hydrocarbons, free fatty acids and esters, ketones, lactones, furans, and other minor products may also be produced, with the free fatty acids becoming more important in thermally stressed oils. In addition, there is significant cis to trans isomerisation and conjugation of double bonds in the hydroperoxides formed as an oil oxidises. [Pg.126]

In the absence of light, most polymers are stable for very long periods at ambient temperatures. However, above room temperature many polymers start to degrade in an air atmosphere even without the influence of light. For example, a number of polymers show a deterioration of mechanical properties after heating for some days at about 100 °C and even at lower temperatures (e.g., polyethylene, polypropylene, poly(oxy methylene), and poly(ethylene sulfide)). Measurements have shown that the oxidation at 140 °C of low-density polyethylene increases exponentially after an induction period of 2 h. It was concluded that thermal oxidation, like photooxidation, is caused by autoxidation, the difference merely being that the radical formation from the hydroperoxide is now activated by heat. The primary reaction can be a direct reaction with oxygen (Van Krevelen and Nijenhuis 2009) ... [Pg.254]


See other pages where Deterioration thermal autoxidation is mentioned: [Pg.623]    [Pg.623]    [Pg.244]    [Pg.399]    [Pg.605]    [Pg.1424]    [Pg.337]    [Pg.73]    [Pg.419]   
See also in sourсe #XX -- [ Pg.623 ]




SEARCH



Deterioration

© 2024 chempedia.info