Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Desorption materials

Lasers are utilised as a universal tool for sampling solids. Laser desorption and volatilisation found their way to applications such as interfacing TLC to GC and to MS. In laser desorption material transport across the surface is negligible. Laser volatilisation is characterised by considerable transport of mass, momentum, and energy and occasional plasma formation. [Pg.328]

Catalytic gas-phase reactions play an important role in many bulk chemical processes, such as in the production of methanol, ammonia, sulfuric acid, and nitric acid. In most processes, the effective area of the catalyst is critically important. Since these reactions take place at surfaces through processes of adsorption and desorption, any alteration of surface area naturally causes a change in the rate of reaction. Industrial catalysts are usually supported on porous materials, since this results in a much larger active area per unit of reactor volume. [Pg.47]

The energetics and kinetics of film formation appear to be especially important when two or more solutes are present, since now the matter of monolayer penetration or complex formation enters the picture (see Section IV-7). Schul-man and co-workers [77, 78], in particular, noted that especially stable emulsions result when the adsorbed film of surfactant material forms strong penetration complexes with a species present in the oil phase. The stabilizing effect of such mixed films may lie in their slow desorption or elevated viscosity. The dynamic effects of surfactant transport have been investigated by Shah and coworkers [22] who show the correlation between micellar lifetime and droplet size. More stable micelles are unable to rapidly transport surfactant from the bulk to the surface, and hence they support emulsions containing larger droplets. [Pg.505]

As is made evident in the next section, there is no sharp dividing line between these two types of adsorption, although the extremes are easily distinguishable. It is true that most of the experimental work has tended to cluster at these extremes, but this is more a reflection of practical interests and of human nature than of anything else. At any rate, although this chapter is ostensibly devoted to physical adsorption, much of the material can be applied to chemisorption as well. For the moment, we do assume that the adsorption process is reversible in the sense that equilibrium is reached and that on desorption the adsorbate is recovered unchanged. [Pg.601]

Fig. XVII-27. Nitrogen adsorption at 77 K for a series of M41S materials. Average pore diameters squares, 25 A triangles, 40 A circles, 45 A. Adsorption solid symbols desorption open symbols. The isotherms are normalized to the volume adsorbed at Pj = 0.9. (From Ref. 187. Reprinted with kind permission from Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.)... Fig. XVII-27. Nitrogen adsorption at 77 K for a series of M41S materials. Average pore diameters squares, 25 A triangles, 40 A circles, 45 A. Adsorption solid symbols desorption open symbols. The isotherms are normalized to the volume adsorbed at Pj = 0.9. (From Ref. 187. Reprinted with kind permission from Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.)...
Lasers can be used in either pulsed or continuous mode to desorb material from a sample, which can then be examined as such or mixed or dissolved in a matrix. The desorbed (ablated) material contains few or sometimes even no ions, and a second ionization step is frequently needed to improve the yield of ions. The most common methods of providing the second ionization use MALDI to give protonated molecular ions or a plasma torch to give atomic ions for isotope ratio measurement. By adjusting the laser s focus and power, laser desorption can be used for either depth or surface profiling. [Pg.12]

Some solid materials are very intractable to analysis by standard methods and cannot be easily vaporized or dissolved in common solvents. Glass, bone, dried paint, and archaeological samples are common examples. These materials would now be examined by laser ablation, a technique that produces an aerosol of particulate matter. The laser can be used in its defocused mode for surface profiling or in its focused mode for depth profiling. Interestingly, lasers can be used to vaporize even thermally labile materials through use of the matrix-assisted laser desorption ionization (MALDI) method variant. [Pg.280]

Laser desorption is particularly good for producing ions from analytically difficult materials. For example, lasers can be used with bone, ceramics, high-molecular-mass natural and synthetic polymers, and rock or metal specimens. Generally, few fragment ions are formed. [Pg.384]

Ionization can be improved in many cases by placing the sample in a matrix formed from sinapic acid, nicotinic acid, or other materials. This variant of laser desorption is known as matrix-assisted laser desorption ionization (MALDI). The vaporized acids transfer protons to sample molecules (M) to produce protonated ions [M + H]+. [Pg.384]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

Field desorption. The formation of ions in the gas phase from a material deposited on a solid surface (known as an emitter) that is placed in a high electrical field. Field desorption is an ambiguous term because it implies that the electric field desorbs a material as an ion from some kind of emitter on which the material is deposited. There is growing evidence that some of the ions formed are due to thermal ionization and some to field ionization of material... [Pg.438]

Regardless of method, desorption is never complete. Adsorbent capacity is always less following regeneration than it is on initial loading of adsorbent. Some adsorbable materials undergo chemisorption they chemically combine with the adsorbent. An example is the Reinluft process (52) for removing SO2 from flue gas on activated carbon. The SO2 is attached to the carbon as sulfuric acid. Desorption occurs only upon heating to 370°C a mixture of CO2, evolved from the chemically bound carbon, and SO2 are driven off. [Pg.388]

PMMA-impregnated sol—gel-derived siUca gels have also been examined (54). Long-wave uv illumination was employed in addition to benzoyl peroxide for PMMA polymerization. This method prohibited the degradation of the siUca xerogel from moisture adsorption and desorption. Overall the material behaved more like bulk PMMA than bulk siUca, with the exception of hardness. [Pg.330]

A more simplified description is a unit that combusts materials in the presence of oxygen at temperatures normally ranging from 800 to 1650°C. A typical configuration of an incinerator is shown in Figure 9. Typical types of incineration units that are discussed herein are catalytic oxidation, fluidized beds, hquid injection, multiple hearth furnaces, and rotary kiln. Thermal desorption is also discussed. However, an overview of the main factors affecting incinerator performance is presented first, below. [Pg.168]

In the other common paradigm, desorption from a system or a material is studied. At t = 0, the system is loaded with a known concentration or activity of dmg and is immersed in an infinite, weU-stirred receiver solution maintained at concentration C = 0. The amount released per unit area is then measured over time. For a uniform slab of thickness / where the release of dmg is from both sides, the fraction released / Q is linear with the square root of time and is given by ... [Pg.225]

The value of equilibrium moisture content, for many materials, depends on the direction in which equilibrium is approached. A different value is reached when a wet material loses moisture by desorption, as in drying, from that obtained when a diy material gains it by adsorption. For diying calculations the desorption values are preferred. In the general case, the equilibrum moisture content reached by losing moisture is higher than tnat reached by adsorbing it. [Pg.1182]


See other pages where Desorption materials is mentioned: [Pg.225]    [Pg.745]    [Pg.314]    [Pg.745]    [Pg.225]    [Pg.745]    [Pg.314]    [Pg.745]    [Pg.666]    [Pg.695]    [Pg.929]    [Pg.940]    [Pg.1264]    [Pg.1331]    [Pg.150]    [Pg.572]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.12]    [Pg.199]    [Pg.18]    [Pg.281]    [Pg.388]    [Pg.426]    [Pg.426]    [Pg.180]    [Pg.250]    [Pg.189]    [Pg.547]    [Pg.266]    [Pg.375]    [Pg.511]    [Pg.224]    [Pg.243]    [Pg.504]    [Pg.285]    [Pg.1551]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Composite materials 8, 24 Desorption rate

Laser desorption/ionization mass spectrometry organic material analysis using

Material-enhanced laser desorption/ionization

© 2024 chempedia.info