Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deoxyribose-5-phosphate aldolase DERA

Aldolases catalyze asymmetric aldol reactions via either Schiff base formation (type I aldolase) or activation by Zn2+ (type II aldolase) (Figure 1.16). The most common natural donors of aldoalses are dihydroxyacetone phosphate (DHAP), pyruvate/phosphoenolpyruvate (PEP), acetaldehyde and glycine (Figure 1.17) [71], When acetaldehyde is used as the donor, 2-deoxyribose-5-phosphate aldolases (DERAs) are able to catalyze a sequential aldol reaction to form 2,4-didexoyhexoses [72,73]. Aldolases have been used to synthesize a variety of carbohydrates and derivatives, such as azasugars, cyclitols and densely functionalized chiral linear or cyclic molecules [74,75]. [Pg.27]

The cholesterol-lowering drug atorvastatin, marketed as Lipitor, is an example where biocatalysis research has been applied extensively and is in industrial use. The enzyme 2-deoxyribose-5-phosphate aldolase (DERA) has been a target of directed evolution for the production of atorvastatin intermediates [8,9,71]. DeSantis and coworkers [8,9] used structure-based... [Pg.73]

Figure 14.12 Asymmetric tandem aldol reaction using 2-deoxyribose-5-phosphate aldolase (DERA) and its application for production of Atorvastatin... Figure 14.12 Asymmetric tandem aldol reaction using 2-deoxyribose-5-phosphate aldolase (DERA) and its application for production of Atorvastatin...
An interesting enzyme-catalyzed three-component aldolization reaction has been described by Gijsen and Wong [18]. Here, acetaldeyde, 2-substituted acetaldehydes, and dihydroxyacetone phosphate react in the presence of the aldolases 2-deoxyribose-5-phosphate aldolase (DERA) and fructose 1,6-diphosphate aldolase (RAMA) forming the corresponding 5-deoxyketose derivatives (Scheme 9.9). [Pg.281]

The chiral 2,4-dideoxyhexose derivative required for the HMG CoA reductase inhibitors has also been prepared using 2-deoxyribose-5-phosphate aldolase (DERA).The reactions start with a stereospecific addition of acetaldehyde (44) (Fig. 18.14) to a substituted acetaldehyde to form a 3-hydroxyl-substituted butyraldehyde 45, which reacts subsequently with another acetaldehyde to form a 2,4-dideoxyhexose derivative 46. DERA has been expressed in Escherichia coli (Gijsen and Wong, 1995). [Pg.335]

Scheme 5.2. The four main groups of aldolase reactions classified by their donor substrate (1) Dihydroxyacetone phosphate (DHAP)- dependent aldolases, (2) phosphoenol pyruvate (PEP)-and pyruvate-dependent aldolases, (3) 2-deoxyribose-5-phosphate aldolase (DERA), a member of the acetaldehyde-dependent aldolases, and (4) glycine-dependent aldolases (GDA). Scheme 5.2. The four main groups of aldolase reactions classified by their donor substrate (1) Dihydroxyacetone phosphate (DHAP)- dependent aldolases, (2) phosphoenol pyruvate (PEP)-and pyruvate-dependent aldolases, (3) 2-deoxyribose-5-phosphate aldolase (DERA), a member of the acetaldehyde-dependent aldolases, and (4) glycine-dependent aldolases (GDA).
A different aldolase has been over-expressed in E. coli and used by Chi-Huey Wong in his synthesis of epothilones. It is 2-deoxyribose-5-phosphate aldolase (DERA) and the natural reaction is the condensation of acetaldehyde as enol with glyceraldehyde-3-phosphate 164 as electrophilic component to give an aldol product 165 that is trapped as a hemiacetal 166. [Pg.669]


See other pages where Deoxyribose-5-phosphate aldolase DERA is mentioned: [Pg.332]    [Pg.524]    [Pg.243]    [Pg.272]    [Pg.114]    [Pg.159]    [Pg.950]    [Pg.1587]    [Pg.28]    [Pg.214]    [Pg.4]    [Pg.291]    [Pg.168]   
See also in sourсe #XX -- [ Pg.335 ]




SEARCH



2 -deoxyribose-5-phosphate

2-deoxyribose-5-phosphate aldolase

Aldolases 2-deoxyribose

Aldolases 5-phosphate aldolase

Aldolases deoxyribose-phosphate aldolase

DERA

Deoxyribose

© 2024 chempedia.info