Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density functional theory conditions

However, even the best experimental technique typically does not provide a detailed mechanistic picture of a chemical reaction. Computational quantum chemical methods such as the ab initio molecular orbital and density functional theory (DFT) " methods allow chemists to obtain a detailed picture of reaction potential energy surfaces and to elucidate important reaction-driving forces. Moreover, these methods can provide valuable kinetic and thermodynamic information (i.e., heats of formation, enthalpies, and free energies) for reactions and species for which reactivity and conditions make experiments difficult, thereby providing a powerful means to complement experimental data. [Pg.266]

From the early advances in the quantum-chemical description of molecular electron densities [1-9] to modem approaches to the fundamental connections between experimental electron density analysis, such as crystallography [10-13] and density functional theories of electron densities [14-43], patterns of electron densities based on the theory of catastrophes and related methods [44-52], and to advances in combining theoretical and experimental conditions on electron densities [53-68], local approximations have played an important role. Considering either the formal charges in atomic regions or the representation of local electron densities in the structure refinement process, some degree of approximate transferability of at least some of the local structural features has been assumed. [Pg.56]

AMI semi-empirical and B3LYP/6-31G(d)/AMl density functional theory (DFT) computational studies were performed with the purpose of determining which variously substituted 1,3,4-oxadiazoles would participate in Diels-Alder reactions as dienes and under what conditions. Also, bond orders for 1,3,4-oxadiazole and its 2,5-diacetyl, 2,5-dimethyl, 2,5-di(trifluoromethyl), and 2,5-di(methoxycarbonyl) derivatives were calculated <1998JMT153>. The AMI method was also used to evaluate the electronic properties of 2,5-bis[5-(4,5,6,7-tetrahydrobenzo[A thien-2-yl)thien-2-yl]-l,3,4-oxadiazole 8. The experimentally determined redox potentials were compared with the calculated highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energies. The performance of the available parameters from AMI was verified with other semi-empirical calculations (PM3, MNDO) as well as by ab initio methods <1998CEJ2211>. [Pg.399]

The results indicate that the formation of long-lived trimethyl substituted silyl cations, in the presence of aromatic solvents, as claimed by Lambert et al.95 is not feasible under these conditions. Persistent silicenium ions require sterically more shielding substituents at silicon or hypercoordinative stabilization.96 98 13C and 29Si NMR chemical shifts were calculated for a series of disilylated arenium ions 85 using density functional theory (DFT). The calculations predict consistently the unsaturated carbon atoms to be too deshielded by 8-15 ppm. Applying an empirical correction, the deviation between experiment and theory was reduced to -0.4 to 9 ppm, and the 13C NMR chemical shift of the highly diagnostic cipso is reproduced by the calculations (Ad = -3.8 to 2.7 ppm).99... [Pg.151]

Dale, Sir Henry 77 Delay 77 Delay, Jean 77 delocalized orbitals 233 Deniker, Pierre 77 Density Functional Theory 55,228,241,271,278 deposition conditions 168 design of the Sawatzky-Kay apparatus 152 Dess-Martin oxidation 11 detailed atomic-level representation 92 determinant 279 diastereoface selectivity 22,... [Pg.288]

Density functional theory calculations (B3LYP/6-31G level) have provided an explanation for the stereodivergent outcome of the Staudinger reaction between acyl chlorides and imines to form 2-azetidinones (/3-lactams). When ketene is formed prior to cycloaddition, preferential or exclusive formation of ct5-j6-lactam (50) is predicted. If, however, the imine reacts directly with the acid chloride, the step that determines the stereochemical outcome is an intramolecular 5n2 displacement, and preferential or exclusive formation of trans isomer (51) is predicted. These predictions agree well with the experimental evidence regarding the stereochemical outcome for various reactants and reaction conditions. [Pg.333]

A new transition-state-searching algorithm was used to determine the mechanism for methanol condensation to form dimethyl ether within the microporous environment of the zeolite, chabazite, using periodic boundary conditions and density functional theory. An acid site in the zeolite produces MeOH2+ for nucleophilic attack by a second adsorbed MeOH molecule. [Pg.342]

In variational treatments of many-particle systems in the context of conventional quantum mechanics, these symmetry conditions are explicitly introduced, either in a direct constructive fashion or by resorting to projection operators. In the usual versions of density functional theory, however, little attention has b n payed to this problem. In our opinion, the basic question has to do with how to incorporate these symmetry conditions - which must be fulfilled by either an exact or approximate wavefunction - into the energy density functional. [Pg.213]

The symmetry problem is solved trivially in the local-scaling version of density functional theory, because the symmetry conditions can be included in... [Pg.213]

The concept of purification is well known in the linear-scaling literature for one-particle theories like Hartree-Fock and density functional theory, where it denotes the iterative process by which an arbitrary one-particle density matrix is projected onto an idempotent 1-RDM [2,59-61]. An RDM is said to be pure A-representable if it arises from the integration of an Al-particle density matrix T T, where T (the preimage) is an Al-particle wavefiinction [3-5]. Any idempotent 1-RDM is N-representable with a unique Slater-determinant preimage. Within the linear-scaling literature the 1-RDM may be directly computed with unconstrained optimization, where iterative purification imposes the A-representabUity conditions [59-61]. Recently, we have shown that these methods for computing the 1 -RDM directly... [Pg.183]

It is fair to say that neither of these two approaches works especially well N-representability conditions in the spatial representation are virtually unknown and the orbital-resolved computational methods are promising, but untested. It is interesting to note that one of the most common computational algorithms (cf. Eq. (96)) can be viewed as a density-matrix optimization, although most authors consider only a weak A -representability constraint on the occupation numbers of the g-matrix [1, 4, 69]. Additional A-representability constraints could, of course, be added, but it seems unlikely that the resulting g-density functional theory approach would be more efficient than direct methods based on semidefinite programming [33, 35-37]. [Pg.479]


See other pages where Density functional theory conditions is mentioned: [Pg.635]    [Pg.98]    [Pg.414]    [Pg.54]    [Pg.83]    [Pg.93]    [Pg.270]    [Pg.153]    [Pg.103]    [Pg.139]    [Pg.370]    [Pg.389]    [Pg.62]    [Pg.114]    [Pg.163]    [Pg.192]    [Pg.271]    [Pg.45]    [Pg.441]    [Pg.17]    [Pg.326]    [Pg.176]    [Pg.220]    [Pg.39]    [Pg.39]    [Pg.51]    [Pg.172]    [Pg.55]    [Pg.446]    [Pg.447]    [Pg.480]    [Pg.585]    [Pg.338]    [Pg.168]    [Pg.441]    [Pg.57]    [Pg.723]    [Pg.863]   


SEARCH



Conditional density

Conditioning theory

Density functional theory consistency conditions

Functioning conditions

© 2024 chempedia.info