Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density functional theory accuracy

Density functional theory (DFT) has become very popular in recent years. This is justified based on the pragmatic observation that it is less computationally intensive than other methods with similar accuracy. This theory has been developed more recently than other ah initio methods. Because of this, there are classes of problems not yet explored with this theory, making it all the more crucial to test the accuracy of the method before applying it to unknown systems. [Pg.42]

A basis set is a set of functions used to describe the shape of the orbitals in an atom. Molecular orbitals and entire wave functions are created by taking linear combinations of basis functions and angular functions. Most semiempirical methods use a predehned basis set. When ah initio or density functional theory calculations are done, a basis set must be specihed. Although it is possible to create a basis set from scratch, most calculations are done using existing basis sets. The type of calculation performed and basis set chosen are the two biggest factors in determining the accuracy of results. This chapter discusses these standard basis sets and how to choose an appropriate one. [Pg.78]

In the last few years, methods based on Density Functional Theory have gained steadily in popularity. The best DFT methods achieve significantly greater accuracy than Harttee-Fock theory at only a modest increase in cost (far less than MP2 for medium-size and larger molecular systems). They do so by including some of the effects of electron correlation much less expensively than traditional correlated methods. [Pg.118]

There is no systematic way in which the exchange correlation functional Vxc[F] can be systematically improved in standard HF-LCAO theory, we can improve on the model by increasing the accuracy of the basis set, doing configuration interaction or MPn calculations. What we have to do in density functional theory is to start from a model for which there is an exact solution, and this model is the uniform electron gas. Parr and Yang (1989) write... [Pg.225]

Quantum-chemical calculations which utilize the density functional theory (DFT) are now perhaps amongst the most frequently performed because of their relatively low cost and high accuracy. Structural results obtained from DFT based methods are often as good as those derived from MP2 calculations. It is well documented that DFT methods, especially those involving hybrid functionals such as B3LYP, B3P86 and B3PW91, yield reliable... [Pg.3]

It is a truism that in the past decade density functional theory has made its way from a peripheral position in quantum chemistry to center stage. Of course the often excellent accuracy of the DFT based methods has provided the primary driving force of this development. When one adds to this the computational economy of the calculations, the choice for DFT appears natural and practical. So DFT has conquered the rational minds of the quantum chemists and computational chemists, but has it also won their hearts To many, the success of DFT appeared somewhat miraculous, and maybe even unjust and unjustified. Unjust in view of the easy achievement of accuracy that was so hard to come by in the wave function based methods. And unjustified it appeared to those who doubted the soundness of the theoretical foundations. There has been misunderstanding concerning the status of the one-determinantal approach of Kohn and Sham, which superficially appeared to preclude the incorporation of correlation effects. There has been uneasiness about the molecular orbitals of the Kohn-Sham model, which chemists used qualitatively as they always have used orbitals but which in the physics literature were sometimes denoted as mathematical constructs devoid of physical (let alone chemical) meaning. [Pg.5]

Transition-metal chemistry in particular was the field where pioneering density functional results have been of unprecedented accuracy for larger systems and impressive to any researcher in the field. Today, it seems that density functional theory has adopted the role of a standard tool for the prediction of molecular structures. [Pg.135]

The technique used to extract the wave function in this work is conceptually simple the wave function obtained is a single determinant which reproduces the observed experimental data to the desired accuracy, while minimising the Hartree-Fock (HF) energy. The idea is closely related to some interesting recent work by Zhao et al. [1]. These authors have obtained the Kohn-Sham single determinant wave function of density functional theory (DFT) from a theoretical electron density. [Pg.264]

A new and accurate quantum mechanical model for charge densities obtained from X-ray experiments has been proposed. This model yields an approximate experimental single determinant wave function. The orbitals for this wave function are best described as HF orbitals constrained to give the experimental density to a prescribed accuracy, and they are closely related to the Kohn-Sham orbitals of density functional theory. The model has been demonstrated with calculations on the beryllium crystal. [Pg.272]

Equation (4-5) can be directly utilized in statistical mechanical Monte Carlo and molecular dynamics simulations by choosing an appropriate QM model, balancing computational efficiency and accuracy, and MM force fields for biomacromolecules and the solvent water. Our group has extensively explored various QM/MM methods using different quantum models, ranging from semiempirical methods to ab initio molecular orbital and valence bond theories to density functional theory, applied to a wide range of applications in chemistry and biology. Some of these studies have been discussed before and they are not emphasized in this article. We focus on developments that have not been often discussed. [Pg.83]

In recent years, density-functional theory has emerged as the computational quantum chemistry method of choice for biological problems of medium size range (up to a few hundreds of atoms) in applications that do not require extensive conformational sampling. The field continues to advance in the accuracy of new functionals, the improvement of algorithms and the functionality and computational performance of software [81]. [Pg.386]

Schwegler, E. Grossman, J. C. Gygi, F. Galli, G., Towards an assessment of the accuracy of density functional theory for first principles simulations of water II, J. Chem. Phys. 2004,121, 5400-5409... [Pg.421]


See other pages where Density functional theory accuracy is mentioned: [Pg.97]    [Pg.376]    [Pg.190]    [Pg.857]    [Pg.2]    [Pg.3]    [Pg.104]    [Pg.342]    [Pg.6]    [Pg.576]    [Pg.204]    [Pg.189]    [Pg.58]    [Pg.82]    [Pg.83]    [Pg.88]    [Pg.92]    [Pg.133]    [Pg.152]    [Pg.153]    [Pg.173]    [Pg.174]    [Pg.179]    [Pg.185]    [Pg.200]    [Pg.213]    [Pg.216]    [Pg.220]    [Pg.221]    [Pg.226]    [Pg.14]    [Pg.84]    [Pg.106]    [Pg.173]    [Pg.174]    [Pg.85]    [Pg.131]   
See also in sourсe #XX -- [ Pg.47 , Pg.137 ]

See also in sourсe #XX -- [ Pg.47 , Pg.137 , Pg.138 ]




SEARCH



Density accuracy

© 2024 chempedia.info