Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dense-phase fluidized beds heat transfer

The preceding model successfully explains the role played by the particles in the heat transfer processes occurring in the dense-phase fluidized bed at voidage a < 0.7. But it predicts very large values when the contact time of particles with the heating surface decreases because the nonuniformity of the solids concentration near the wall is not taken into account in this model. [Pg.508]

Heat Transfer in Dense-Phase Fluidized Beds... [Pg.512]

As noted, most of the heat transfer models and correlations for gas-solid fluidization systems were originally developed for dense-phase fluidized beds (see Chapter 9). In the following, the behavior of heat transfer coefficients between the suspension (or bed) and the particle, between the suspension (or bed) and the gas, and between the suspension (or bed) and the wall or heat transfer surface are discussed. [Pg.512]

For the bed-to-surface heat transfer in a dense-phase fluidized bed, the particle circulation induced by bubble motion plays an important role. This can be seen in a study of heat transfer properties around a single bubble rising in a gas-solid suspension conducted... [Pg.513]

A unique feature of the dense-phase fluidized bed is the existence of a maximum convective heat transfer coefficient /zmax when the radiative heat transfer is negligible. This feature is distinct for fluidized beds with small particles. For beds with coarse particles, the heat transfer coefficient is relatively insensitive to the gas flow rate once the maximum value is reached. [Pg.518]

Since the solid particles in the spouted bed are well mixed, their average temperature in different parts of the annulus can be considered to be the same, just as in the case of a fluidized bed. The maximum value of the heat transfer coefficient in the h-U plot is also similar to that in a dense-phase fluidized bed [Mathur and Epstein, 1974]. [Pg.527]

The book is arranged in two parts Part I deals with basic relationships and phenomena, including particle size and properties, collision mechanics of solids, momentum transfer and charge transfer, heat and mass transfer, basic equations, and intrinsic phenomena in gas-solid flows. Part II discusses the characteristics of selected gas-solid flow systems such as gas-solid separators, hopper and standpipe flows, dense-phase fluidized beds, circulating fluidized beds, pneumatic conveying systems, and heat and mass transfer in fluidization systems. [Pg.558]

Wen, C.Y., Leva, M., "Fluidized-Bed Heat Transfer - a Generalized Dense Phase Correlation, AIChE Journal, 1956, 482. [Pg.74]

The particle-to-gas heat transfer coefficient in dense-phase fluidization systems can be determined from correlation Eq. 13.3.1 [2] given in Table 13.3. The correlation indicates that the values of particle-to-gas heat transfer coefficient in a dense-phase fluidized bed lie between those for fixed bed with large isometric particles (with a factor of 1.8 in the second term [49]) and those for the single-particle heat transfer coefficient (with a factor of 0.6 in the second term of the equation). [Pg.901]

The influence of surface location and orientation on the bed-to-surface heat transfer coefficient in circulating fluidized bed combustors is summarized in Table 13.6. The geometric construction of the combustor and the heat transfer surface is shown in Fig. 13.17. Besides the location and orientation, differences in local heat transfer can also be found on the heat transfer surface/tube. For example, the upper part of the horizontal tube shows the smallest value for the heat transfer coefficient in dense-phase fluidized beds due to less frequent bubble impacts and the presence of relatively low-velocity particles. [Pg.914]

Contrary to dense-phase fluidized beds, the radial and axial distributions of voidage, particle velocity, and gas velocity in a circulating fluidized bed are considerably nonuniform, resulting in a nonuniform heat transfer coefficient profile. Since the particle concentration decreases in the axial direction, the heat transfer also decreases. In the radial direction the heat transfer coefficient exhibits a steep profile near the wall, but is almost constant in the center region. The overall heat transfer coefficient increases with suspension density and particle circulation rate. [Pg.918]

For catalytic reactions, particles used in fluidized bed processes are usually in the range of 40 to 100 pm in mean diameter. Similarly, particle-to-gas heat transfer coefficients in dense phase fluidized beds can be estimated by (Kunii and Levenspiel, 1991) ... [Pg.321]

Another deep-bed spiral-activated solids-transport device is shown by Fig. ll-60e. The flights cany a heat-transfer medium as well as the jacket. A unique feature of this device which is purported to increase heat-transfer capability in a given equipment space and cost is the dense-phase fluidization of the deep bed that promotes agitation and moisture removal on drying operations. [Pg.1095]

Development of a mechanistic model is essential to quantification of the heat transfer phenomena in a fluidized system. Most models that are originally developed for dense-phase fluidized systems are also applicable to other fluidization systems. Figure 12.2 provides basic heat transfer characteristics in dense-phase fluidization systems that must be taken into account by a mechanistic model. The figure shows the variation of heat transfer coefficient with the gas velocity. It is seen that at a low gas velocity where the bed is in a fixed bed state, the heat transfer coefficient is low with increasing gas velocity, it increases sharply to a maximum value and then decreases. This increasing and decreasing behavior is a result of interplay between the particle convective and gas convective heat transfer which can be explained by mechanistic models given in 12.2.2, 12.2.3, and 12.2.4. [Pg.501]


See other pages where Dense-phase fluidized beds heat transfer is mentioned: [Pg.522]    [Pg.537]    [Pg.941]    [Pg.176]    [Pg.895]    [Pg.899]    [Pg.908]    [Pg.913]    [Pg.620]    [Pg.573]    [Pg.116]   
See also in sourсe #XX -- [ Pg.501 , Pg.508 , Pg.512 , Pg.513 , Pg.514 , Pg.515 , Pg.516 , Pg.517 ]




SEARCH



Dense bed

Dense phase

Dense-phase fluidized beds

Dense-phase fluidized beds convective heat transfer coefficient

Fluidization dense phase

Fluidized bed heat transfer

Fluidized beds 3 phase

Fluidized dense-phase

Heat transfer in dense-phase fluidized beds

Heating phase

© 2024 chempedia.info