Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dendrimers dendritic catalysts

Arya et al. used solid phase synthesis to prepare immobilised dendritic catalysts with the rhodium centre in a shielded environment to mimic nature s approach of protecting active sites in a macromolecular environment (e.g. catalytic sites inside enzymes) [51], Two generations PS immobilised rhodium-complexed dendrimers, 6 and the more shielded 7, were synthesised.The PS resin immobilised rhodium-complexed dendrimers were used in the hydroformylation of styrene, p-methoxystyrene, vinyl acetate and vinyl benzoate using a total pressure of 70 bar 1 1 CO/H2 at 45 °C in CH2C12. [Pg.57]

To investigate this dendritic effect, a dimeric model compound was synthesized which mimics the tethered relationship of two catalytic units within one branch of the PAMAM dendrimer. All dendritic catalysts were more active in the HKR than the parent complex. Furthermore, the dendritic catalysts also displayed significantly higher activity than the dimeric model compound. The authors proposed that this positive dendritic effect arises from restricted conformation imposed by the dendrimer structure, thereby creating a bigger effective molarity of [Co(salen)] units. Alternatively, the multimeric nature of the dendrimer, may lead to higher order in productive cooperative interactions between the catalytic units. [Pg.91]

As shown in Tab. 11.5, multi-component catalyst (27) matches the activity of its corresponding monomer (4), promoting efficient RCM of (19) in just 15 minutes at 40 °C. The reaction mixture was passed through a short column in methylene chloride to isolate the desired product. Subsequent washing of the silica with diethyl ether led to quantitative recovery of the dendritic catalyst. 400 MHz NMR analysis revealed that 13% of the styrene ligands on the dendrimer were va-... [Pg.475]

In core- (and focal point-) functionalized dendrimers, the catalyst may benefit from the site isolation created by the environment of the dendritic structure. Site-isolation effects in dendrimers can also be beneficial for other functionalities (a review of this topic has appeared in Reference (10)). When reactions are deactivated by excess ligand and when a bimetallic deactivation mechanism is operative, core-functionalized dendrimers can minimize the deactivation. [Pg.73]

Another noteworthy difference between core- and periphery-functionalized dendrimers is that much higher costs are involved in the application of core-functionalized dendrimers due to their higher molecular weight per catalytic site. Furthermore, applications may be limited by the solubility of the dendrimer. (To dissolve 1 mmol of catalyst/L, 20 g/L of core-functionalized dendrimer is required (MW 20 000 Da, 1 active site) compared to 1 g/L of periphery-functionalized dendrimer (MW 20 000 Da, 20 active sites). On the other hand, for core-functionalized systems, the solubility of the dendritic catalyst can be optimized by changing the peripheral groups. [Pg.73]

Dendritic catalysts can be recycled by using techniques similar to those applied with their monomeric analogues, such as precipitation, two-phase catalysis, and immobilization on insoluble supports. Furthermore, the large size and the globular structure of the dendrimer can be utilized to facilitate catalyst-product separation by means of nanofiltration. Nanofiltration can be performed batch wise or in a continuous-flow membrane reactor (CFMR). The latter offers significant advantages the conditions such as reactant concentrations and reactant residence time can be controlled accurately. These advantages are especially important in reactions in which the product can react further with the catalytically active center to form side products. [Pg.73]

In the first part of this overview, we focus on the recycling of dendritic catalysts. This part of the review is divided according to the various recycling approaches, and the sections are organized by way of the reactions catalyzed. In the second part, we describe examples in which attachment of the catalyst to the dendrimer framework results in modified performance. (Although we attempted to make a clear division between catalyst recycling and dendritic effects, these two properties cannot always be addressed separately.)... [Pg.75]

Better results were obtained by using in situ prepared palladium complexes of a G4 dendrimer (calculated molecular weight 20 564 Da for 100% palladium loading of the 32 diphosphines). After 100 residence times, the conversion had decreased from 100% to approximately 75% (Fig. 3). A small amount of palladium was leached from the catalyst during this experiment (0.14% per residence time), which only partly explains the decrease in conversion. The formation of inactive PdCl2 was proposed to account for the additional drop in activity. A sound conclusion about the effect of this dendritic catalyst requires more experiments. [Pg.76]

In a batch process, all dendritic catalysts showed very high activity. When a substrate-to-Pd molar ratio of 2000 was used, the conversions after 5 min were 49, 55, 45, and 47% when dendrimers with 4, 36, 8, and 24 phosphine ligands were used, respectively. These results show that all the active sites located at the periphery of the dendrimer support acted independently as catalysts. [Pg.76]

When the catalyst is located in the core of a dendrimer, its stability can also be increased by site-isolation effects. Core-functionalized dendritic catalysts supported on a carbosilane backbone were reported by Oosterom et al. 19). A novel route was developed to synthesize dendritic wedges with arylbromide as the focal point. These wedges were divergently coupled to a ferrocenyl diphosphine core to form dppf-like ligands (5). Other core-functionalized phosphine dendritic ligands have also been prepared by the same strategy 20). [Pg.80]

Kollner et al. (29) prepared a Josiphos derivative containing an amine functionality that was reacted with benzene-1,3,5-tricarboxylic acid trichloride (11) and adamantane-l,3,5,7-tetracarboxylic acid tetrachloride (12). The second generation of these two types of dendrimers (13 and 14) were synthesized convergently through esterification of benzene-1,3,5-tricarboxylic acid trichloride and adamantane-1,3,5,7-tetracarboxylic acid with a phenol bearing the Josiphos derivative in the 1,3 positions. The rhodium complexes of the dendrimers were used as chiral dendritic catalysts in the asymmetric hydrogenation of dimethyl itaconate in methanol (1 mol% catalyst, 1 bar H2 partial pressure). The enantioselectivities were only... [Pg.91]

In periphery-functionalized dendritic catalysts, the functional groups at the surface determine the solubility and miscibility and thus the precipitation properties. Many dendrimers functionalized with organometallic complexes do not dissolve in apolar solvents, and the presence of multiple metal centers at the periphery facilitates precipitation upon addition of this type of solvent. It is emphasized that the use of dendrimer-immobilized catalysts with the goal of recovery through precipitation is worthwhile only if the tendency to precipitation of the dendritic system exceeds that of its non-dendritic equivalent. [Pg.100]

Reetz et al. 16) were the first to recover and recycle a dendritic catalyst through a precipitation procedure. The dimethylpalladium complex of the phosphine-functionalized DAB-dendr-[N(CH2PPh2)2]i6 dendrimer (la) is an active catalyst for the Heck reaction of bromobenzene and styrene to give trara-stilbene (89% trans-stilbene and 11% 1,1-diphenylethylene, at a conversion of 85—90%, Scheme 8). [Pg.100]

BINAP core-functionalized dendrimers were synthesized by Fan et al. (36), via condensation of Frechet s polybenzyl ether dendritic wedges to 5,5 -diamino-BINAP (26—28). The various generations of BINAP core-functionalized dendrimers were tested in the ruthenium-catalyzed asymmetric hydrogenation of 2-[p-(2-methyl-propyl)phenyl]acrylic acid in the presence of 80 bar H2 pressure and in a 1 1 (v/v) methanol/toluene mixture. As later generations of the in situ prepared cymeneruthe-nium chloride dendritic catalysts were used, higher activities were observed (TOF values were 6.5, 8.3, and 214 h respectively). Relative to those of the BINAP... [Pg.101]

Application of the same dendrimer 31 in the Stille coupling of iodobenzene with tributylvinyltin in DMF (Scheme 10 5mol% catalyst) showed an activity equal to that of the tetraphosphole macrocycle complex (Fu3P)4Pd(OAc)2 (31b 100% conversion after 15 min). In contrast to the monomer, the dendritic catalyst could be recycled, but when recycled it showed a decrease in activity (95% conversion after 15 min). A better performance was achieved with the in situ prepared catalyst 32 by mixing the third-generation diphosphine dendrimer with Pd(OAc)2 (P/Pd ratio = 4/1). An activity similar to that of the monomeric complex (Fu3P)4Pd(OAc)2 was observed (100% conversion after 15 min), even after three consecutive runs. [Pg.106]

The phosphine-containing ruthenium dihydride dendrimer 33 was found to be an active catalyst for the diastereoselective Michael addition of ethyl cyanoacetate to diethyl ethylidenemalonate in THF (Scheme 12). The dendritic catalyst showed an activity and selectivity similar to those of the reference compound RuH2(PPh3)4 (100% conversion after 24 h and a diastereoselectivity of 7/3) (40). The dendritic catalyst was recycled twice by precipitation with diethyl ether without loss of activity or selectivity. Complex 34 showed similar activity and recoverability over three runs like that of complex 33. [Pg.107]

The monomeric catalyst fraction showed similar R[ values as the metathesis products, which complicated the chromatographic separation and recycling procedure. Immobilization of the ruthenium catalyst on a dendrimer was anticipated to facilitate the chromatographic separation. Indeed, the presence of multiple (polar) organometallic sites on the dendrimer periphery resulted in stronger adsorption interactions between the dendritic catalyst and the silica and thus a better separation from the product. Two types of dendritic catalysts were prepared in which... [Pg.113]

Fig. 13). The cross-linked scandium-modified dendrimer was tested in a number of Lewis acid-catalyzed reactions, including Mukaiyama aldol additions to aldehydes and aldimines, Diels-Alder reactions, and Friedel-Crafts acylations. The dendritic catalyst was recovered by a simple filtration. The Mukaiyama aldol... [Pg.125]

Mizugaki et al. 74) have recently utilized thermomorphic properties of Pd(0)-complexed phosphinated dendrimers for dendritic catalyst recycling. Using the method developed by Reetz 16), they prepared dendritic ligands containing, respectively, 2, 8, 16, and 32 chelating diphosphines. Palladium dichloride was com-plexed to the dendrimers, and a reduction in the presence of triphenylphosphine gave the Pd(0)-complexed dendrimers (80—83). The dendritic complexes were active... [Pg.131]

An early example of a dendritic catalyst was reported by Knapen et al. 24), who functionalized GO and G1 carbosilane dendrimers with up to 12 NCN pincer-nickel(II) groups (7a) and applied them as catalysts in the Kharasch addition of organic halides to alkenes (Scheme 3). [Pg.134]


See other pages where Dendrimers dendritic catalysts is mentioned: [Pg.224]    [Pg.224]    [Pg.40]    [Pg.58]    [Pg.81]    [Pg.489]    [Pg.114]    [Pg.195]    [Pg.332]    [Pg.333]    [Pg.334]    [Pg.334]    [Pg.134]    [Pg.72]    [Pg.74]    [Pg.76]    [Pg.80]    [Pg.84]    [Pg.93]    [Pg.99]    [Pg.101]    [Pg.102]    [Pg.108]    [Pg.118]    [Pg.121]    [Pg.121]    [Pg.130]    [Pg.132]    [Pg.133]    [Pg.134]   
See also in sourсe #XX -- [ Pg.161 ]




SEARCH



Dendrimers Dendritic

Dendritic dendrimer

© 2024 chempedia.info