Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deactivation of adsorbent

Deactivation of adsorbents such as charcoal (which do not absorb water) can be achieved with certain high molecular weight organic compounds such as catyl alcohol or stearic acid. [Pg.137]

Deactivation of adsorbent, see Adsorbent, HETP, Linear capacity Delocalized adsorption, 270 Demixing, see Solvent Detection of sample bands, 349-350 Development, see Bed development Diatomaceous earth, 172 Diazaaromatics, see Pyridine derivatives Dielectric constant, see Solvent strength Diffusion coefficient, calculation of, 102 Diffusion of sample, contribution to HETP, 102... [Pg.208]

In this report, we extend our measurements to phosphate buffer systems, where significantly faster electron transfer rates are observed. The effect of sample lyophilization on cytochrome c adsorption and electron transfer kinetics at tin oxide is also evaluated. We also discuss our current thinking on the electron transfer mechanism, the nature of cytochrome c binding to tin oxide, and the gradual deactivation of adsorbed electroactive cytochrome c that is typically observed. [Pg.64]

Thus, the column should completely resolve about 14 equally spaced peaks. It is seen from figure 1 that a peak capacity of 14 is not realized although most of the components are separated. This means that the column may not have been packed particularly well and/or the flow rate used was significantly above the optimum velocity that would provide the maximum efficiency. The mobile phase that was used was tetrahydrofuran which was sufficiently polar to deactivate the silica gel with a layer (or perhaps bilayer) of adsorbed solvent molecules yet was sufficiently dispersive to provide adequate sample... [Pg.285]

Room temperature CO oxidation has been investigated on a series of Au/metal oxide catalysts at conditions typical of spacecraft atmospheres CO = 50 ppm, COj = 7,000 ppm, H2O = 40% (RH) at 25 C, balance = air, and gas hourly space velocities of 7,000- 60,000 hr . The addition of Au increases the room temperature CO oxidation activity of the metal oxides dramatically. All the Au/metal oxides deactivate during the CO oxidation reaction, especially in the presence of CO in the feed. The stability of the Au/metal oxide catalysts decreases in the following order TiOj > FejO, > NiO > CO3O4. The stability appears to decrease with an increase in the basicity of the metal oxides. In situ FTIR of CO adsorption on Au/Ti02 at 25 C indicates the formation of adsorbed CO, carboxylate, and carbonate species on the catalyst surface. [Pg.427]

L. H Little, Inftared Speara of Adsorbed Species, Academic Press, New York, 1966, p 54. W. Hally, H.J. Bitter, K Seshan, J.R.H. Ross, and J.A. Lercher, Im Conf on Catalyst Deactivation, Oostende, Oct., 1994, Stud. Surf Sci Catal 88 (1994) 167... [Pg.472]

TLC plates coated with the layer of polar adsorbent should be prewetted with a nonpolar solvent, such as benzene or n-heptane (n-hexane), to prevent deactivation of the adsorbent surface and to avoid glue up as a result of the penetration of the pores by lipid molecules and other impurities (i.e., wax). [Pg.253]

Adsorbed layers, thin films of oxides, or other compounds present on the metal surface aggravate the pattern of deactivation of metastable atoms. The adsorption changes the surface energy structure. Besides, dense layers of adsorbate may hamper the approach of metastable atom sufficiently close to the metal to suppress thus the process of resonance ionization. An example can be work [130], in which a transition from a two- to one-electron mechanism during deactivation of He atoms is exemplified by the Co - Pd system (111). The experimental material on the interaction of metastable atoms with an adsorption-coated surface of... [Pg.321]

The results of work [ 135] are of specific interest. The work surveyed the influence of the nature and structure of adsorbed layers upon the mechanism of deactivation of He(2 S) atoms. It has been shown that on a surface of pure Ni(lll) coated with absorbed bridge-positioned molecules of CO or NO, the deactivation of metastable atoms proceeds by the mechanism of resonance ionization with subsequent Auger-neutralization. With large adsorbent coverages, when the adsorbed molecules are in a position normal to the surface, deactivation proceeds by the one-electron Auger-mechanism. The adsorbed layers of C2H4 and H2O on Ni(lll) de-excite atoms of He(2 S) by the two-electron mechanism solely. In case of NH3 adsorption, both mechanisms of deactivation are simultaneously realized. Based on the given data, the authors infer that the nature of metastable atoms deactivation on an adsorbate coated metal surface is determined by the distance the electron density of adsorbate valance electrons is removed from the metal lattice. [Pg.322]

Figure 2.6 Reagents used for the deactivation of silanol groups on glass surfaces. A - disilazanes, B > cyclic siloxanes, and C -silicon hydride polysiloxanes in which R is usually methyl, phenyl, 3,3,3-trifluoropropyl, 3-cyanopropyl, or some combination of these groups. The lover portion of the figure provides a view of the surface of fused silica with adsorbed water (D), fused silica surface after deactivation with a trimethylsilylating reagent (E), and fused silica surface after treatment with a silicon hydride polysiloxane (F). Figure 2.6 Reagents used for the deactivation of silanol groups on glass surfaces. A - disilazanes, B > cyclic siloxanes, and C -silicon hydride polysiloxanes in which R is usually methyl, phenyl, 3,3,3-trifluoropropyl, 3-cyanopropyl, or some combination of these groups. The lover portion of the figure provides a view of the surface of fused silica with adsorbed water (D), fused silica surface after deactivation with a trimethylsilylating reagent (E), and fused silica surface after treatment with a silicon hydride polysiloxane (F).
The initial step of the adsorption of cyclic sulfides on a Mo(100) surface is also the formation of adsorbed thiolate groups.395-397 Adsorbed alkyl thiolates decompose to adsorbed sulfur, carbon, and hydrogen on the clean Mo surface, but once the surface is deactivated by adsorbed sulfur, alkanes and alkenes evolve from the surface. Tetrahydrothiophene (34) and trimethylene sulfide decompose on Mo(110) to alkanes and alkenes by way of a common intermediate, which is proposed to be a surface thiolate (33). The thiolate undergoes hydrogenation or dehydrogenation, depending on the surface hydrogen concentration (Scheme 4.115).398 399... [Pg.181]

The fact that soil always contains water, or more precisely an aqueous solution, is extremely important to keep in mind when carrying out an analytical procedure because water can adversely affect analytical procedures and instrumentation. This can result in an over- or under-determination of the concentrations of components of interest. Deactivation of chromatographic adsorbents and columns and the destruction of sampling tools such as salt windows used in infrared spectroscopy are examples of the potential deleterious effects of water. This can also result in absorbance or overlap of essential analytical bands in various regions of the spectrum. [Pg.13]

In this context the lipase was immobilized on a support which also adsorbed water and propionic acid. During the reaction, the water caused a decrease of the reaction rate. While the water adsorption on the catalyst results in a reversible decrease of the enzyme activity, an excessive accumulation of water in the bulk mobile phase resulted in rapid irreversible deactivation of the enzyme. [Pg.201]

In catalysis, adsorbed CO may retard some reactions such as olefin hydrogenation, fuel cell conversion, and enantioselective hydrogenation. For instance, Lercher and coworkers observed the deactivation of Pt/Si02 in the liquid-phase hydrogenation of crotonaldehyde, and ascribed this deactivation to the decomposition of crotonaldehyde on platinum surface to adsorbed CO [138]. Blaser and coworkers found that the addition of a small amount of formic acid decreases the rate of liquid-phase hydrogenation of ethyl pyruvate on cinchonidine-modified Pt/Al203 catalyst, which they explained as the decomposition of formic acid on the catalyst to adsorbed CO. Interestingly, the addition of acetic acid does not decrease the reaction rate, but whether acetic acid decomposes on the catalyst as formic acid does was not mentioned [139]. [Pg.251]

The condensation of 2-hydroxyacetophenone with benzaldehyde yielded exclusively 2 -hydroxy-chalcone, and the cyclization to flavanone was not observed. An investigation of the species adsorbed on the catalyst (289) suggested that CS condensation on the Ba(OH)2 surface occurs via a very rigid transition state, whereby the OH group of 2-hydroxyacetophenone is bonded to the catalyst surface and placed at great distance from the carbonyl carbon atom of the aldehyde, making the cyclization of 2 -hydroxy-chalcone to flavanone difficult. Deactivation of the catalyst was not observed in the presence of moderate amounts of organic acids, such as benzoic, acrylic, or trichloroacetic acid. [Pg.289]

Soil colloids are capable of adsorbing most allelopathic chemicals. Such adsorption would result in temporary loss of toxin activity. Chemical changes could occur during adsorption that would permanently deactivate the toxin. The adsorption reactions are usually reversible, however, so that some or all of the toxin would still be available for uptake by a receiver plant. [Pg.180]

Measurement of heat of adsorption by means of microcalorimetry has been used extensively in heterogeneous catalysis to gain more insight into the strength of gas-surface interactions and the catalytic properties of solid surfaces [61-65]. Microcalorimetry coupled with volumetry is undoubtedly the most reliable method, for two main reasons (i) the expected physical quantities (the heat evolved and the amount of adsorbed substance) are directly measured (ii) no hypotheses on the actual equilibrium of the system are needed. Moreover, besides the provided heat effects, adsorption microcalorimetry can contribute in the study of all phenomena, which can be involved in one catalyzed process (activation/deactivation of the catalyst, coke production, pore blocking, sintering, and adsorption of poisons in the feed gases) [66]. [Pg.202]


See other pages where Deactivation of adsorbent is mentioned: [Pg.83]    [Pg.121]    [Pg.77]    [Pg.368]    [Pg.83]    [Pg.121]    [Pg.77]    [Pg.368]    [Pg.150]    [Pg.614]    [Pg.78]    [Pg.80]    [Pg.291]    [Pg.334]    [Pg.376]    [Pg.470]    [Pg.112]    [Pg.296]    [Pg.310]    [Pg.314]    [Pg.711]    [Pg.853]    [Pg.123]    [Pg.973]    [Pg.291]    [Pg.58]    [Pg.265]    [Pg.259]    [Pg.452]    [Pg.467]    [Pg.235]    [Pg.202]    [Pg.47]    [Pg.264]    [Pg.136]    [Pg.176]   
See also in sourсe #XX -- [ Pg.24 , Pg.340 ]




SEARCH



Adsorbates deactivation

© 2024 chempedia.info