Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Data bioinformatic

Busold CH, Winter S, Hauser N, Bauer A, Dippon J, Hoheisel JD, et al. Integration of GO annotations in Correspondence Analysis facilitating the interpretation of microarray data. Bioinformatics 2005 21 2424-9. [Pg.161]

VOIT, E.O., RADIVOYEVITHC, T., Biochemical systems analysis of genomewide expression data, Bioinformatics, 2000,16, 1023-1037. [Pg.61]

Tanay, A., Sharan, R, and Shamir, R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, S136-S144. [Pg.66]

Ihmels, ]., Bergmann, S., and Brkai, N. (2004) Defining transcription modules using large-scale gene expression data. Bioinformatics 20, 1993-2003. [Pg.66]

Prelic, A. et al. (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122-1129. [Pg.66]

Wallqvist A, Rabow AA, Shoemaker RH et al. Linking the growth inhibition response from the National Cancer Institute s anti-cancer screen to gene expression levels and other molecular target data. Bioinformatics 2003 19 2212- 2224. [Pg.73]

Lin M, Wei LJ, Sellers WR et al. dChipSNP signiheanee eurve and elustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics 2QOA. O. 232- 2AO. [Pg.87]

Geller SC, Gregg JP, Hagerman P, Rocke DM. Transformation and normalization of oligonucleotide microarray data. Bioinformatics 2003 19 1817-1823. [Pg.555]

Durbin BP, Hardin JS, Hawkins DM, Rocke DM. A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 2002 18(suppl 1) S105 SI 10. [Pg.555]

Jeffries N (2005) Algorithms for alignment of mass spectrometry proteomic data. Bioinformatics 21(4) 3066-3073. [Pg.739]

Furey TS, Christianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000 16 906-14. [Pg.426]

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 139-140... [Pg.43]

Chagoyen M, Pazos F (2011) MBRole enrichment analysis of metabolomic data. Bioinformatics 27(5) 730-731... [Pg.429]

Myers, C.L., Dunham, M.J., Kung, S.Y., and Troyanskaya, O.G. 2004. Accurate detection of aneuploidies in array CGH and gene expression microarray data. Bioinformatics 20, 3533-3543. [Pg.117]

O. G. Troyanskaya, M. E. Garber, P. O. Brown, D. Botstein, and R. B. Altman, Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics 18(11) 1454-1461 (2002). [Pg.501]

B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone, D. Ward, K. WiUiams, and Ft. Zhao, Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19(13) 1636-1643 (2003). [Pg.502]

K. Y. Yeung and W. L. Ruzzo, Principal component analysis for clustering gene expression data. Bioinformatics 17(9) 763-774 (2001). [Pg.503]

Zou M. and Conzen S. D. (2004). A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics. 21, pp. 71-79. [Pg.400]

Katajamaa, M., Miettinen, J., and Oresic, M., MZmine Toolbox for processing and visualization of mass spectrometry based molecular profile data, Bioinformatics, 22(5), 634, 2006. [Pg.331]

Horesh, Y., A. Amir, S. Michaeli, and R. Unger. 2003. A rapid method for detection of putative RNAi target genes in genomic data. Bioinformatics 19, Suppl. no. 2 73-80. [Pg.259]

Distribution of data Bioinformatics uses over 500 data resources and analysis tools found all over the Internet [5]. They often have Web interfaces through which biologists enter data for analysis, cut and paste results to new Web resources, or explore results through rich annotations with cross-links [21... [Pg.453]

McLachlan, G.J., Bean, R.W., and Peel, D. (2002) A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18, 413 22. [Pg.192]

Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., and Ruzzo, W.L. (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977-987. [Pg.192]

Sontag, E. Kiyatkin, A. Kholodenko, B. N. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 2004, 20, 1877-1886. [Pg.221]

Belacel, N., Cuperlovic-Culf, M., Laflamme, M., and Ouellette, R. (2004). Fuzzy J-means and VNS methods for clustering genes from microarray data. Bioinformatics, 20(11) 1690-1701. [Pg.123]

Dembele, D., and Kastner, P. (2003). Fuzzy C-means for clustering microarray data. Bioinformatics, 19 973-980. [Pg.124]

Bar-Joseph, Z. (2004). Analyzing time series gene expression data. Bioinformatics, 20 2493-2503. Bueno Filho, J. S., Gihnour, S. G., and Rosa, G. J. (2006). Design of microarray experiments for genetical genomics studies. Genetics, 174 945—957. [Pg.216]

Shmulevich, L, and Zhang, W. (2002). Binary analysis and optimization-based normalization of gene expression data. Bioinformatics, 18 555—565. [Pg.282]


See other pages where Data bioinformatic is mentioned: [Pg.260]    [Pg.63]    [Pg.519]    [Pg.260]    [Pg.148]    [Pg.302]    [Pg.310]    [Pg.19]    [Pg.5]    [Pg.88]    [Pg.127]    [Pg.398]    [Pg.664]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Bioinformatic

Bioinformatics

© 2024 chempedia.info