Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

D-Xylulose phosphates

This portion of the pathway begins with an isomerization and an epimeriza-tion, and it leads to the formation of either D-ribose-5-phosphate or D-xylulose-5-phosphate. These intermediates can then be converted into glycolytic intermediates or directed to biosynthetic processes. [Pg.764]

This thermodynamic driving force is particularly useful tvith multienzyme equilibrium systems such as that used in the gram-scale synthesis of tv ro equivalents ofo-xylulose 5-phosphate (104) from (26) (Figure 10.38) [171,172]. Similarly, the corresponding 1-deoxy-D-xylulose 5-phosphate tvas efficiently produced from pyruvate and (34) by the catalytic action of the thiamine diphosphate-dependent 1-deoxy-D-xylulose 5-phosphate synthase (DXS) (EC 2.2.1.7) from E. coli [173]. [Pg.303]

Glucuronate is reduced to L-gulonate in an NADPH-dependent reaction L-gulonate is the direct precursor of ascorbate in those animals capable of synthesizing this vitamin. In humans and other primates as well as guinea pigs, ascorbic acid cannot be synthesized because of the absence of L-g ulonolactone oxidase. L-Gulonate is metabolized ultimately to D-xylulose 5-phosphate, a constituent of the pentose phosphate pathway. [Pg.167]

LicHTENTHALER H K (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants , Ann Rev Plant Physiol Plant Mol Biol, 50, 47-65. [Pg.277]

D-glyceraldehyde-3-phosphate, pyruvate (G3P) l-deoxy-D-xylulose-5-phosphate (DXP) 2C-methyl-D-erythritol-4-phosphate (MEP) 4-diphosph-2C-methyl-D-erythritol (CDP-ME) 4-diphosphocytidyl-2C-methyl-D-erythritol-2-phophate (CDP-MEP)... [Pg.358]

Sprenger, G.A. et al.. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol, Proc. Natl. Acad Sci. USA 94, 12857, 1997. Lange, B.M. et al., A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway, Proc. Natl. Acad Sci. USA 95, 2100, 1998. Lois, L.M. et al., Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1- deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis, Proc. Natl. Acad. Sci. USA 95, 2105, 1998. [Pg.389]

Page, J.E. et al., Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing, Plant Physiol. 134, 1401, 2004. [Pg.389]

Lois, L.M. et al.. Carotenoid biosynthesis during tomato fruit development regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J. 22, 503, 2000. [Pg.390]

Hans, J. et al.. Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize, Plant Physiol. 134, 614, 2004. [Pg.394]

Estevez, J.M. et al., l-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants, J. Biol. Chem. 276, 22901, 2001. [Pg.396]

Transketolase (TKase) [EC 2.2.1.1] essentially catalyzes the transfer of C-2 unit from D-xylulose-5-phosphate to ribose-5-phosphate to give D-sedoheptulose-7-phosphate, via a thiazolium intermediate as shown in Fig. 16. An important discovery was that hydroxypyruvate works as the donor substrate and the reaction proceeds irreversibly via a loss of carbon dioxide (Fig. 17). In this chapter, we put emphasis on the synthesis with hydroxypyruvate, as it is the typical TPP-mediated decarboxylation reaction of a-keto acid. ... [Pg.321]

D-Xylulose 5-phosphate (ii-threo-2-pentulose 5-phosphate, XP) stands as an important metabolite of the pentose phosphate pathway, which plays a key fimction in the cell and provides intermediates for biosynthetic pathways. The starting compound of the pathway is glucose 6-phosphate, but XP can also be formed by direct phosphorylation of D-xylulose with li-xylulokinase. Tritsch et al. [114] developed a radiometric test system for the measurement of D-xylulose kinase (XK) activity in crude cell extracts. Aliquots were spotted onto silica plates and developed in n-propyl alcohol-ethyl acetate-water (6 1 3 (v/v) to separate o-xylose/o-xylulose from XP. Silica was scraped off and determined by liquid scintillation. The conversion rate of [ " C]o-xylose into [ " C]o-xylulose 5-phosphate was calculated. Some of the works devoted to the separation of components necessary while analyzing enzyme activity are presented in Table 9.8. [Pg.227]

Figure 9.4 Monoterpene biosynthesis in peppermint oil gland secretory cells. The enzymes involved in this pathway are (1) 1-deoxy-D-xylulose 5-phosphate synthase, (2) 2-C-methyl-D-erythritol 4-phosphate reductoisomerase, (3) 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase, (4) 4-(cytidine 5 -diphospho)-2-C-methyl-D-erythritol kinase, (5) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, (6) isopentenyl diphosphate isomerase, (7) geranyl diphosphate synthase, (8)... Figure 9.4 Monoterpene biosynthesis in peppermint oil gland secretory cells. The enzymes involved in this pathway are (1) 1-deoxy-D-xylulose 5-phosphate synthase, (2) 2-C-methyl-D-erythritol 4-phosphate reductoisomerase, (3) 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase, (4) 4-(cytidine 5 -diphospho)-2-C-methyl-D-erythritol kinase, (5) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, (6) isopentenyl diphosphate isomerase, (7) geranyl diphosphate synthase, (8)...
Table 9.2 Incorporation rate of [2-14C]-pyruvate into monoterpenes of isolated peppermint oil gland secretory cells in the presence of fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, an enzyme of the mevalonate-independent pathway of isoprenoid biosynthesis. Table 9.2 Incorporation rate of [2-14C]-pyruvate into monoterpenes of isolated peppermint oil gland secretory cells in the presence of fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, an enzyme of the mevalonate-independent pathway of isoprenoid biosynthesis.
LANGE, B.M., CROTEAU, R., Isoprenoid biosynthesis via a mevalonate-independent pathway in plants cloning and heterologous expression of 1-deoxy-D-xylulose 5-phosphate reductoisomerase from peppermint, Arch. Biochem. Biophys., 1999,365,170-174. [Pg.160]

SAGNER, S., EISENREICH, W., FELLERMEIER, M LATZEL, C., BACHER, A., ZENK, M.H., Biosynthesis of 2-C-methyl-D-erythritol in plants by rearrangement of the terpenoid precursor, 1-deoxy-D-xylulose 5-phosphate, Tetrahedron Lett., 1998, 39, 2091-2094. [Pg.161]

TAKAHASHI, S., KUZUYAMA, T WATANABE H., SETO, H., A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway, Proc. Natl. Acad. Sci. USA, 1998, 95, 9879-9884. [Pg.161]

ZEIDLER, J., SCHWENDER, J., MULLER, C WIESNER, J., WEIDEMEYER, C., BECK, E., JOMAA, H., LICHTENTHALER, H.K., Inhibition of the non-mevalonate 1-deoxy-D-xylulose 5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin, Z. Naturforsch., 1998,53c, 980-986. [Pg.162]

The CPPase substrate DMAPP (15) is formed from isopentenyl pyrophosphate (IPP) (14) via the IPP isomerase reaction. It had been assumed that IPP was generated only via mevalonic acid (12) (Fig. 2), but Rohmer discovered another route, 2-C-methyl-D-erythritol 4-phosphate (13) (MEP) pathway (Fig. 2) [22, 23]. A key step in the MEP pathway is the reaction catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS), which combines hydroxyethyl thiamine pyrophosphate (hydroxyethyl TPP) generated from pyruvic acid (17) and TPP with glyceral-dehyde 3-phosphate (18) to yield 1-deoxy-D-xylulose 5-phosphate (19) containing five carbons. The mevalonate pathway operates in the cytosol of plants and animals, whereas the MEP pathway is present in the plastid of plants or in eubacteria [24-27]. [Pg.75]

Wanke M, Skorupinska-Tudek K, Swiezewska E (2001) Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Act... [Pg.145]

This thiamin pyrophosphate-dependent enzyme [EC 4.1.2.9] catalyzes the reaction of D-xylulose 5-phosphate with orthophosphate to produce acetyl phosphate, d-glyceraldehyde 3-phosphate, and water. [Pg.554]

This enzyme [EC 5.1.3.1] (also known as phosphoribu-lose epimerase, erythrose-4-phosphate epimerase, and pentose-5-phosphate 3-epimerase) catalyzes the interconversion of D-ribulose 5-phosphate and D-xylulose 5-phosphate. The enzyme can also act on D-erythrose 4-phosphate. [Pg.622]

This enzyme [EC 5.1.3.4] catalyzes the interconversion of L-ribulose 5-phosphate and D-xylulose 5-phosphate. [Pg.622]

The enzymatic conversion of l-deoxy-D-xylulose-5-phosphate to pyridoxol phosphate (Vitamin B6) in E. coli was demonstrated <99JA7722>. [Pg.239]

From the many enzymes that are known to make and break C-C bonds, we first chose the two transferases, transketolase (TKT) and transaldolase (TAL), both from the Gram-negative bacterium Escherichia coli. While project B21 evolved, we learned that this microorganism holds other and so far unknown enzymes which are of interest for asymmetric syntheses. One transketolase-like enzyme, 1-deoxy-D-xylulose 5-phosphate synthase (DXS), turned out to be the first enzyme of a novel biosynthetic pathway leading to isoprenoids in bacteria, algae, and plants. The other, fructose 6-phosphate aldolase (ESA) - while similar to transaldolase - allows the direct use of the inexpensive dihydroxyacetone in aldol condensations. [Pg.312]

C-C-Bonding Microbial Enzymes 317 2.2.2.2.2 1-Deoxy-D-xylulose 5-Phosphate Synthase (DXS)... [Pg.317]


See other pages where D-Xylulose phosphates is mentioned: [Pg.168]    [Pg.389]    [Pg.407]    [Pg.266]    [Pg.183]    [Pg.185]    [Pg.146]    [Pg.150]    [Pg.151]    [Pg.152]    [Pg.152]    [Pg.153]    [Pg.156]    [Pg.79]    [Pg.469]   
See also in sourсe #XX -- [ Pg.303 ]

See also in sourсe #XX -- [ Pg.227 ]

See also in sourсe #XX -- [ Pg.240 ]

See also in sourсe #XX -- [ Pg.1165 ]

See also in sourсe #XX -- [ Pg.162 , Pg.346 ]




SEARCH



1 -Deoxy-D-xylulose-5-phosphate pathways

D-Xylulose

D-Xylulose-l-phosphate

Deoxy-D-xylulose 5-Phosphate Synthase (DXS)

Deoxy-D-xylulose 5-phosphate

Deoxy-D-xylulose 5-phosphate reductoisomerase

Deoxy-D-xylulose 5-phosphate synthase

L-deoxy-D-xylulose-5-phosphate

Xylulose-5-phosphate

Xyluloses

© 2024 chempedia.info