Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Xylulose 5-phosphate

The ready availability of the transketolase (TK E.C. 2.2.1.1) from E. coli within the research collaboration in G. A. Sprenger s group suggested the joint development of an improved synthesis of D-xylulose 5-phosphate 19, which was expensive but required routinely for activity measurements [27]. In vivo, transketolase catalyzes the stereospecific transfer of a hydroxyacetyl nucleophile between various sugar phosphates in the presence of a thiamine diphosphate cofactor and divalent cations, and the C2 donor component 19 offers superior kinetic constants. For synthetic purposes, the enzyme is generally attractive for its high asymmetric induction at the newly formed chiral center and high kinetic enantioselectivity for 2-hydroxyaldehydes, as well as its broad substrate tolerance for aldehyde acceptors [28]. [Pg.359]


This portion of the pathway begins with an isomerization and an epimeriza-tion, and it leads to the formation of either D-ribose-5-phosphate or D-xylulose-5-phosphate. These intermediates can then be converted into glycolytic intermediates or directed to biosynthetic processes. [Pg.764]

FIGURE 23.31 The phosphopentose epimerase reaction interconverts ribulose-5-P and xylulose-5-phosphate. The mechanism involves an enediol intermediate and occurs with inversion at C-3. [Pg.766]

One of the steps in the pentose phosphate pathway for glucose catabolism is the reaction of xylulose 5-phosphate with ribose 5-phosphate in the presence of a transketolase to give glyceraldehyde 5-phosphate and sedoheptulose 7-phosphate. [Pg.1176]

This thermodynamic driving force is particularly useful tvith multienzyme equilibrium systems such as that used in the gram-scale synthesis of tv ro equivalents ofo-xylulose 5-phosphate (104) from (26) (Figure 10.38) [171,172]. Similarly, the corresponding 1-deoxy-D-xylulose 5-phosphate tvas efficiently produced from pyruvate and (34) by the catalytic action of the thiamine diphosphate-dependent 1-deoxy-D-xylulose 5-phosphate synthase (DXS) (EC 2.2.1.7) from E. coli [173]. [Pg.303]

Ribulose 5-phosphate is the substrate for two enzymes. Ribulose 5-phosphate 3-epimerase alters the configuration about carbon 3, forming another ketopentose, xylulose 5-phosphate. Ribose 5-phosphate ketoisom-erase converts ribulose 5-phosphate to the corresponding aldopentose, ribose 5-phosphate, which is the precursor of the ribose required for nucleotide and nucleic acid synthesis. Transketolase transfers the two-carbon... [Pg.163]

Glucuronate is reduced to L-gulonate in an NADPH-dependent reaction L-gulonate is the direct precursor of ascorbate in those animals capable of synthesizing this vitamin. In humans and other primates as well as guinea pigs, ascorbic acid cannot be synthesized because of the absence of L-g ulonolactone oxidase. L-Gulonate is metabolized ultimately to D-xylulose 5-phosphate, a constituent of the pentose phosphate pathway. [Pg.167]

LicHTENTHALER H K (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants , Ann Rev Plant Physiol Plant Mol Biol, 50, 47-65. [Pg.277]

D-glyceraldehyde-3-phosphate, pyruvate (G3P) l-deoxy-D-xylulose-5-phosphate (DXP) 2C-methyl-D-erythritol-4-phosphate (MEP) 4-diphosph-2C-methyl-D-erythritol (CDP-ME) 4-diphosphocytidyl-2C-methyl-D-erythritol-2-phophate (CDP-MEP)... [Pg.358]

Sprenger, G.A. et al.. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol, Proc. Natl. Acad Sci. USA 94, 12857, 1997. Lange, B.M. et al., A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway, Proc. Natl. Acad Sci. USA 95, 2100, 1998. Lois, L.M. et al., Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1- deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis, Proc. Natl. Acad. Sci. USA 95, 2105, 1998. [Pg.389]

Page, J.E. et al., Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing, Plant Physiol. 134, 1401, 2004. [Pg.389]

Lois, L.M. et al.. Carotenoid biosynthesis during tomato fruit development regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J. 22, 503, 2000. [Pg.390]

Hans, J. et al.. Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize, Plant Physiol. 134, 614, 2004. [Pg.394]

Estevez, J.M. et al., l-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants, J. Biol. Chem. 276, 22901, 2001. [Pg.396]

Transketolase (TKase) [EC 2.2.1.1] essentially catalyzes the transfer of C-2 unit from D-xylulose-5-phosphate to ribose-5-phosphate to give D-sedoheptulose-7-phosphate, via a thiazolium intermediate as shown in Fig. 16. An important discovery was that hydroxypyruvate works as the donor substrate and the reaction proceeds irreversibly via a loss of carbon dioxide (Fig. 17). In this chapter, we put emphasis on the synthesis with hydroxypyruvate, as it is the typical TPP-mediated decarboxylation reaction of a-keto acid. ... [Pg.321]

D-Xylulose 5-phosphate (ii-threo-2-pentulose 5-phosphate, XP) stands as an important metabolite of the pentose phosphate pathway, which plays a key fimction in the cell and provides intermediates for biosynthetic pathways. The starting compound of the pathway is glucose 6-phosphate, but XP can also be formed by direct phosphorylation of D-xylulose with li-xylulokinase. Tritsch et al. [114] developed a radiometric test system for the measurement of D-xylulose kinase (XK) activity in crude cell extracts. Aliquots were spotted onto silica plates and developed in n-propyl alcohol-ethyl acetate-water (6 1 3 (v/v) to separate o-xylose/o-xylulose from XP. Silica was scraped off and determined by liquid scintillation. The conversion rate of [ " C]o-xylose into [ " C]o-xylulose 5-phosphate was calculated. Some of the works devoted to the separation of components necessary while analyzing enzyme activity are presented in Table 9.8. [Pg.227]

Ribulose 5-phosphate is capable of a reversible isomerization to other pentose phosphates-xylulose 5-phosphate and ribose 5-phosphate. These reactions are catalyzed by two respective enzymes, viz., pentose-phosphate epimerase and pentose-phosphate isomerase, according to the scheme below ... [Pg.181]

Two other pentose phosphates (ribose 5-phosphate and xylulose 5-phosphate), which are derived from ribulose 5-phosphate, are important for the subsequent reaction of the cycle. Two molecules of... [Pg.181]

Transfer of glycolic aldehyde from xylulose 5-phosphate onto ribose 5-phosphate or the first transketolase reaction. The next reaction, which is catalyzed by transketolase, involves the pentose phosphates produced by the foregoing reaction (the transferable moiety is shown in the box) ... [Pg.182]

A ribose 5-phosphate molecule and one of the two xylulose 5-phosphate molecules are used during the first transketolase reaction. The other xylulose 5-phosphate molecule is consumed later, in the second transketolase reaction. [Pg.182]

Transfer of glycolic aldehyde from xylulose 5-phosphate onto erythrose 4-phosphate or the second transketloase reaction. This reaction is related to the first transketolase reaction and is catalyzed by the same enzyme. The only distinction is that erythrose 4-phosphate acts as an acceptor for glycolic aldehyde ... [Pg.183]

Figure 9.4 Monoterpene biosynthesis in peppermint oil gland secretory cells. The enzymes involved in this pathway are (1) 1-deoxy-D-xylulose 5-phosphate synthase, (2) 2-C-methyl-D-erythritol 4-phosphate reductoisomerase, (3) 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase, (4) 4-(cytidine 5 -diphospho)-2-C-methyl-D-erythritol kinase, (5) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, (6) isopentenyl diphosphate isomerase, (7) geranyl diphosphate synthase, (8)... Figure 9.4 Monoterpene biosynthesis in peppermint oil gland secretory cells. The enzymes involved in this pathway are (1) 1-deoxy-D-xylulose 5-phosphate synthase, (2) 2-C-methyl-D-erythritol 4-phosphate reductoisomerase, (3) 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase, (4) 4-(cytidine 5 -diphospho)-2-C-methyl-D-erythritol kinase, (5) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, (6) isopentenyl diphosphate isomerase, (7) geranyl diphosphate synthase, (8)...
Table 9.2 Incorporation rate of [2-14C]-pyruvate into monoterpenes of isolated peppermint oil gland secretory cells in the presence of fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, an enzyme of the mevalonate-independent pathway of isoprenoid biosynthesis. Table 9.2 Incorporation rate of [2-14C]-pyruvate into monoterpenes of isolated peppermint oil gland secretory cells in the presence of fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, an enzyme of the mevalonate-independent pathway of isoprenoid biosynthesis.

See other pages where Xylulose 5-phosphate is mentioned: [Pg.766]    [Pg.1176]    [Pg.164]    [Pg.164]    [Pg.165]    [Pg.165]    [Pg.166]    [Pg.166]    [Pg.168]    [Pg.389]    [Pg.407]    [Pg.182]    [Pg.266]    [Pg.116]    [Pg.183]    [Pg.185]    [Pg.600]    [Pg.146]    [Pg.150]    [Pg.151]    [Pg.152]    [Pg.152]    [Pg.153]    [Pg.156]   
See also in sourсe #XX -- [ Pg.244 ]

See also in sourсe #XX -- [ Pg.434 ]

See also in sourсe #XX -- [ Pg.649 , Pg.650 ]

See also in sourсe #XX -- [ Pg.208 , Pg.209 ]

See also in sourсe #XX -- [ Pg.649 , Pg.650 ]

See also in sourсe #XX -- [ Pg.147 ]

See also in sourсe #XX -- [ Pg.50 ]

See also in sourсe #XX -- [ Pg.36 , Pg.40 , Pg.43 ]

See also in sourсe #XX -- [ Pg.215 , Pg.362 ]

See also in sourсe #XX -- [ Pg.119 , Pg.120 , Pg.121 , Pg.123 , Pg.124 , Pg.125 , Pg.127 ]

See also in sourсe #XX -- [ Pg.210 ]

See also in sourсe #XX -- [ Pg.52 , Pg.59 , Pg.60 , Pg.62 ]




SEARCH



1 -Deoxy-D-xylulose-5-phosphate pathways

D-Xylulose-l-phosphate

D-xylulose 5-phosphate

Deoxy-D-xylulose 5-Phosphate Synthase (DXS)

Deoxy-D-xylulose 5-phosphate

Deoxy-D-xylulose 5-phosphate reductoisomerase

Deoxy-D-xylulose 5-phosphate synthase

L-Xylulose, 5-phosphate

L-deoxy-D-xylulose-5-phosphate

Xylulose 5-phosphate phosphoketolase

Xylulose-5-phosphate, synthesis

Xylulose-phosphate reductoisomerase

Xyluloses

© 2024 chempedia.info