Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cystathionine deficiency

The most common cause of homocystinuria is a congenital deficiency of cystathionine-p-synthase, a pyridoxine-dependent enzyme that condenses homocysteine and... [Pg.675]

Biochemical findings are variable. The blood cobala-min and folate levels often are normal. Patients often have homocysteinemia with hypomethioninemia, the latter finding discriminating this group from homocystinuria secondary to cystathionine- P-synthase deficiency. Urinary excretion of methylmalonic acid may be high, reflecting the fact that vitamin B12 serves as a cofactor for the methyl-malonyl-CoA (coenzyme A) mutase reaction. [Pg.677]

Answer C Only methionine is degraded via the homocysteine/cystathionine pathway and would be elevated in the plasma of a cystathionine synthase-deficient patient via activation of homocysteine methyl-transferase by excess substrate. [Pg.263]

Figure 22.7 Homocysteine formation from methionine and formation of thiolactone from homocysteine. The homocysteine concentration depends upon a balance between the activities of homocysteine methyltransferase (methionine synthase) and cystathionine p-synthase. Both these enzymes require vitamin B12, so a deficiency can lead to an increase in the plasma level of homocysteine. (For details of these reactions, see Chapter 15.) Homocysteine oxidises spontaneously to form thiolactone, which can damage cell membrane. Figure 22.7 Homocysteine formation from methionine and formation of thiolactone from homocysteine. The homocysteine concentration depends upon a balance between the activities of homocysteine methyltransferase (methionine synthase) and cystathionine p-synthase. Both these enzymes require vitamin B12, so a deficiency can lead to an increase in the plasma level of homocysteine. (For details of these reactions, see Chapter 15.) Homocysteine oxidises spontaneously to form thiolactone, which can damage cell membrane.
Further to this, the enzyme cystathionine P-synthase is involved in the catabolism of homocysteine, so that a deficiency of this enzyme also results in an elevated level of homocysteine in the blood. Consequently, patients with a deficiency, even a partial deficiency, could also suffer an increased risk of coronary artery disease. [Pg.517]

Figure 9-5. Pathway for formation of cysteine from methionine. Only the enzymes involved in known diseases of this pathway are shown. Cystathionase is deficient in cysthioninuria, which leads to accumulation of cystathionine without producing frank symptoms. Cystathionine p-synthase deficiency causes homocystinuria. Figure 9-5. Pathway for formation of cysteine from methionine. Only the enzymes involved in known diseases of this pathway are shown. Cystathionase is deficient in cysthioninuria, which leads to accumulation of cystathionine without producing frank symptoms. Cystathionine p-synthase deficiency causes homocystinuria.
The major type is caused by cystathionine fi-synthase deficiency, leading to accumulation of upstream intermediates in the pathway, especially homocysteine. [Pg.130]

The answer is A. The constellation of symptoms exhibited by this patient is characteristic of homocystinuria. The impairment of her cognitive function could be attributed to many conditions, but the key findings are ectopia lentis with downward lens dislocation and osteoporosis in a female of this age. Homocystinuria is produced by inherited deficiency of one of the enzymes in the pathway of Met conversion to Cys. The most common form is cystathionine P-synthase deficiency, which results in accumulation of all upstream components of the pathway, including homocysteine, which is responsible for the toxic effects, and Met, which becomes elevated in the blood. Cystathionine and cysteine, which are both downstream of the block in the pathway caused by cystathionine P Synthase deficiency, would be decreased. Metabolic pathways for lactate and urea are not involved in this disease mechanism. [Pg.138]

A large elevation of Hey in body fluids and tissues is found in several genetic enzyme deficiencies, the homocystinurias. These include cystathionine /3-synlhase deficiency [9], the remethylation defects due to deficiency of MTHF reductase [10], methionine synthase and methionine synthase reductase deficiencies, as well as defects of intracellular cobalamin metabolism [11], namely the cblF, cblC and cblD defects. It is noteworthy that low levels of total Hey (tHcy) have been described in sulphite oxidase deficiency [12]. [Pg.93]

The homocystinurias are a group of disorders involving defects in the metabolism of homocysteine. The diseases are inherited as autosomal recessive illnesses, characterized by high plasma and urinary levels of homocysteine and methionine and low levels of cysteine. The most common cause of homocystinuria is a defect in the enzyme cystathionine /3-synthase, which converts homocysteine to cystathionine (Figure 20.21). Individuals who are homozygous for cystathionine [3-synthase deficiency exhibit ectopia lentis (displace ment of the lens of the eye), skeletal abnormalities, premature arte rial disease, osteoporosis, and mental retardation. Patients can be responsive or non-responsive to oral administration of pyridoxine (vitamin B6)—a cofactor of cystathionine [3-synthase. Bg-responsive patients usually have a milder and later onset of clinical symptoms compared with B6-non-responsive patients. Treatment includes restriction of methionine intake and supplementation with vitamins Bg, B, and folate. [Pg.271]

Correct answer = B. Alkaptonuria is a rare metabolic disease involving a deficiency in homogentisic acid oxidase, and the subsequent accumulation of homogentisic acid in the urine, which turns dark upon standing. The elevation of methylmalonate (due to methylmalonyl CoA mutase deficiency), phenylpyruvate (due to phenylalanine hydroxlyase deficiency), a-ketoisovalerate (due to branched-chain a-ketoacid dehydrogenase deficiency), and homocystine (due to cystathionine synthase deficiency) are inconsistent with a healthy child with darkening of the urine. [Pg.274]

When present in excess methionine is toxic and must be removed. Transamination to the corresponding 2-oxoacid (Fig. 24-16, step c) occurs in both animals and plants. Oxidative decarboxylation of this oxoacid initiates a major catabolic pathway,305 which probably involves (3 oxidation of the resulting acyl-CoA. In bacteria another catabolic reaction of methionine is y-elimination of methanethiol and deamination to 2-oxobutyrate (reaction d, Fig. 24-16 Fig. 14-7).306 Conversion to homocysteine, via the transmethylation pathway, is also a major catabolic route which is especially important because of the toxicity of excess homocysteine. A hereditary deficiency of cystathionine (3-synthase is associated with greatly elevated homocysteine concentrations in blood and urine and often disastrous early cardiovascular disease.299,307 309b About 5-7% of the general population has an increased level of homocysteine and is also at increased risk of artery disease. An adequate intake of vitamin B6 and especially of folic acid, which is needed for recycling of homocysteine to methionine, is helpful. However, if methionine is in excess it must be removed via the previously discussed transsulfuration pathway (Fig. 24-16, steps h and z ).310 The products are cysteine and 2-oxobutyrate. The latter can be oxidatively decarboxylated to propionyl-CoA and further metabolized, or it can be converted into leucine (Fig. 24-17) and cysteine may be converted to glutathione.2993... [Pg.1389]

The transsulfuration pathway involves conversion of homocysteine to cysteine by the sequential action of two pyridoxal phosphate (vitamin B6)-dependent enzymes, cystathionine- 5-synthase (CBS) and cystathionine y-lyase (Fig. 21-2). Transsulfuration of homocysteine occurs predominantly in the liver, kidney, and gastrointestinal tract. Deficiency of CBS, first described by Carson and Neill in 1962, is inherited in an autosomal recessive pattern. It causes homocystinuria accompanied by severe elevations in blood homocysteine (>100 (iM) and methionine (>60 (iM). Homocystinuria due to deficiency of CBS occurs at a frequency of about 1 in 300,000 worldwide but is more common in some populations such as Ireland, where the frequency is 1 in 65,000. Clinical features include blood clots, heart disease, skeletal deformities, mental retardation, abnormalities of the ocular lens, and fatty infiltration of the fiver. Several different genetic defects in the CBS gene have been found to account for loss of CBS activity. [Pg.227]

The metabolism of methionine, shown in Figure 9.5, includes two pyri-doxal phosphate-dependent steps cystathionine synthetase and cystathionase. Cystathionine synthetase is litde affected by vitamin Bg deficiency,... [Pg.255]

It is apparent that abnormally increased excretion of homocysteine and cystathionine metabolites after a test dose of methionine cannot necessarily be regarded as evidence of vitamin Be deficiency. This means that, like the tryptophan load test, the methionine load test is unreUahle as an index of status in epidemiological studies, although it is (probably) reliable in depletion/ repletion studies to determine requirements. [Pg.256]

Deficiency of vitamins Bg, B12, or folate are aU associated with elevated plasma homocysteine, with vitamin Bg deficiency as a result of impaired activity of cystathionine synthetase (Section 9.5.5) and folate and vitamin B12 as a result of impaired activity of methionine synthetase (Section 10.3.4). In subjects with apparently adequate intakes of vitamins Bg and B12, supplements of these two vitamins have little or no effect on fasting plasma homocysteine, although additional vitamin Bg reduces the plasma concentration of homocysteine after a test dose of methionine. By contrast, supplements of... [Pg.293]

E-S) Hypermetbioninuria (decrease in methionine adenosyl transferase) at this step. The condition is relatively benign, whereas cystathionine synthase deficiency (see above) is not benign. [Pg.55]

E-6) Cystathionitturia (deficiency of cys-tathioninase). Cystathionine is elevated in the urine. Treatment with vitamin 65 may reduce the urinary levels of cystathionine, but generally such treatment is unnecessary as the condition tends to be benign. [Pg.55]

These studies arc detailed in w hat follows. Although the severe increases in plasma homocysteine that occur with homozygous cystathionine p-synlhase deficiency can be clearly treated with vitamin Bf, the moderate increases of homocysteine (which are widespread in the population and do not lead to mental retardation) can be treated best with folate. [Pg.552]

Rinkelstein, J, D, and Mudd, 8. H. (1964). Hotnocysiciriuria due to cystathionine synthetase deficiency Mode of inheritance. Scimcc 146, 785-797. [Pg.676]


See other pages where Cystathionine deficiency is mentioned: [Pg.675]    [Pg.676]    [Pg.249]    [Pg.138]    [Pg.84]    [Pg.109]    [Pg.263]    [Pg.267]    [Pg.267]    [Pg.182]    [Pg.60]    [Pg.256]    [Pg.82]    [Pg.256]    [Pg.720]    [Pg.145]    [Pg.146]    [Pg.551]    [Pg.664]    [Pg.676]    [Pg.551]    [Pg.664]    [Pg.676]   
See also in sourсe #XX -- [ Pg.93 , Pg.109 ]

See also in sourсe #XX -- [ Pg.754 , Pg.755 ]




SEARCH



Cystathionine

Cystathionine 3-synthase deficiency

Cystathionine P-synthase deficiency

© 2024 chempedia.info