Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopropane, electrophilic reactions

Additions to cyclopropanes can take place by any of the four mechanisms already discussed in this chapter, but the most important type involves electrophilic attack. For substituted cyclopropanes, these reactions usually follow Markovnikov s rule, though exceptions are known and the degree of regioselectivity is often small. The application of Markovnikov s rule to these substrates can be illustrated by the reaction of 1,1,2-trimethylcyclopropane with The rule predicts that the... [Pg.989]

The discovery of carbene and carbenoid additions to olefins was the major breakthrough that initiated the tapping of this structural resource for synthetic purposes. Even so, designed applications of cyclopropane chemistry in total syntheses remain limited. Most revolve around electrophilic type reactions such as acid induced ring opening or solvolysis of cyclopropyl carbinyl alcohol derivatives. One notable application apart from these electrophilic reactions is the excellent synthesis of allenes from dibromocyclopropanes 2). [Pg.10]

Fluorinated carbocations play an important role as intermediates in electrophilic reactions of fluoroolefins and other unsaturated compounds. For example, F-allyl cation 1 was proposed as a reactive intermediate in reactions of HFP with fluoroolefins catalyzed by Lewis acids [7]. The difference in stability of the corresponding allylic cations was suggested as the explanation for regio-specific electrophilic conjugated addition to CF2=CC1CF=CF2 [11]. Allylic polyfluorinated carbocations were proposed as intermediates in the reactions of terminal allenes with HF [53] and BF3 [54], ring-opening reactions of cyclopropanes [55], Carbocations are also an important part of the classic mechanism of electrophilic addition to olefins (see Eq. 2). This section deals with the questions of existence and stability of poly- and perfluorinated carbocations. [Pg.53]

Non-heterosubstituted organolithiums usually have low configurational stability, but the very rapid cyclisation of 49 means that - assuming tin-lithium exchange of 48 goes with retention - invertive substitution can be proved.51 Inversion at both nucleophilic and electrophilic centres is a common feature of cyclopropane-forming reactions.7... [Pg.255]

Solution phase reaction of an electrophile with cyclopropane(s) requires favorable interaction of the LUMO of the electrophile with the HOMO degenerate, symmetric or anti-symmetric, orbitals of cyclopropane . The Is orbital of H or one lobe of the p-orbital of a carbocation or electrophile can react with the anti-symmetric (3e ) orbital (Figure 2) with consequent reduction in bonding in adjacent carbon-carbon bonds and relief of C(2)-C(3) antibonding. Completion of this carbon-proton or carbon-electrophile bond results in a corner-protonated cyclopropane (39). Reaction of an electrophile, e.g. proton or carbocation, with the degenerate symmetric 3e orbital (Figure 3) will give an... [Pg.270]

Self-condensation of the dianion of cyclopropanecarboxylic acid (450) at 50 °C affords the electrophilic cyclopropane (451). Reaction of the dianion with other carboxylate salts. [Pg.514]

Another application of rhodium carbenoid chemistry relates to the synthesis of strained-ring nitro compounds as high energy-density materials. Nitrocyclo-propanes are the simplest members of this class of compounds and catalyzed additions of a nitrocarbene to an olefin have only been described recently [40], Detailed studies have shown that the success of the reaction is, as expected, dependent on both the alkene and the nitrodiazo precursor. Consistently with the electrophilic character of rhodium carbenoids, only electron-rich alkenes are cyclopropanated. The reaction has been extended to the synthesis of nitrocyclo-propenes but the yields are good for terminal acetylenes only [41]. [Pg.805]

Electrophilic transition-metal-carbene complexes (Fischer carbene complexes) serve as formal carbene transfer reagents in reactions with alkenes to give functionalized cyclopropanes. This reaction behavior is well documented for alkoxycarbene complexes of elements of group In contrast, aminocarbene complexes exhibit a different reactivity over a wide range of conditions and [2 + 1] cycloadditions to alkenes represent exception. [Pg.787]

The relation between strain and reactivity may be illustrated with electrophilic reactions of cyclopropane and cyclobutane (218). The decrease in strain is essentially equal in both compounds, but cyclopropane is highly reactive, whereas cyclobutane is essentially inert. Acid-catalyzed ring opening, for example, is controlled by the basicity of the two cycloalkanes. The latter are only slightly deformed by protonation and little strain is therefore released. [Pg.293]

Free radical halogenatlon of cyclopropane itself is very difficult because the C—H bonds are so strong (recall Problem 3 of Chapter 4). Electrophilic reactions (e.g., additions to a double bond) are not u.seful because the ring is easily broken open. Nucleophilic substitutions are very difficult because of angle strain in the transition states of the reactions, te.. [Pg.186]

The stabilization of chloromethoxycarbene (234) was intensively studied. It is formed from diazirine (233) in a first order reaction with fi/2 = 34h at 20 C. It reacts either as a nucleophile, adding to electron poor alkenes like acrylonitrile with cyclopropanation, or as an electrophile, giving diphenylcyclopropenone with the electron rich diphenylacetylene. In the absence of reaction partners (234) decomposes to carbon monoxide and methyl chloride (78TL1931, 1935). [Pg.225]

The similarity between the reactions of alkenes and cyclopropanes is further demonstrated by the reactions of electrophilic cyclopropanes and cyclopropenes with enamines. Cyclopropylcyanoester74, when treated with the pyrrolidine enamine of cyclohexanone, undergoes what would be a 1,2 cycloaddition in the analogous alkene case, but is actually a 1,3 cycloaddition here, to form adduct 75 (90). A similar reaction between the... [Pg.229]

The Corey-Chaykovsky reaction entails the reaction of a sulfur ylide, either dimethylsulfoxonium methylide (1, Corey s ylide, sometimes known as DMSY) or dimethylsulfonium methylide (2), with electrophile 3 such as carbonyl, olefin, imine, or thiocarbonyl, to offer 4 as the corresponding epoxide, cyclopropane, aziridine, or thiirane. ... [Pg.2]

Yet another kind of alkene addition is the reaction of a carbene with an alkene to yield a cyclopropane. A carbene, R2C , is a neutral molecule containing a divalent carbon with only six electrons in its valence shell. It is therefore highly reactive and is generated only as a reaction intermediate, rather than as an isolable molecule. Because they re electron-deficient, carbenes behave as electrophiles and react with nucieophiiic C=C bonds. The reaction occurs in a single step without intermediates. [Pg.227]

Alkenes of all types can be converted to cyclopropane derivatives by this reaction (though difficulty may be encountered with sterically hindered ones). Even tetracyanoethylene, which responds very poorly to electrophilic attack, gives cyclopropane derivatives with carbenes.Conjugated dienes give 1,2 addition ... [Pg.1085]

Negishi E, Tan Z (2005) Diastereoselective, Enantioselective, and Regioselective Carbo-alumination Reactions Catalyzed by Zirconocene Derivatives. 8 139-176 Netherton M, Fu GC (2005)Pa]ladium-catalyzed Cross-Coupling Reactions of Unactivated Alkyl Electrophiles with Organometallic Compounds. 14 85-108 Nicolaou KC, King NP, He Y (1998) Ring-Closing Metathesis in the Synthesis of EpothUones and Polyether Natmal Products. 1 73-104 Nishiyama H (2004) Cyclopropanation with Ruthenium Catalysts. 11 81-92 Noels A, Demonceau A, Delaude L (2004) Ruthenium Promoted Catalysed Radical Processes toward Fine Chemistry. 11 155-171... [Pg.293]

From the point of view of both synthetic and mechanistic interest, much attention has been focused on the addition reaction between carbenes and alkenes to give cyclopropanes. Characterization of the reactivity of substituted carbenes in addition reactions has emphasized stereochemistry and selectivity. The reactivities of singlet and triplet states are expected to be different. The triplet state is a diradical, and would be expected to exhibit a selectivity similar to free radicals and other species with unpaired electrons. The singlet state, with its unfilled p orbital, should be electrophilic and exhibit reactivity patterns similar to other electrophiles. Moreover, a triplet addition... [Pg.905]

In most transition metal-catalyzed reactions, one of the carbene substituents is a carbonyl group, which further enhances the electrophilicity of the intermediate. There are two general mechanisms that can be considered for cyclopropane formation. One involves formation of a four-membered ring intermediate that incorporates the metal. The alternative represents an electrophilic attack giving a polar species that undergoes 1,3-bond formation. [Pg.923]

Several steps are involved in these reactions. First, the enolate of the (1-kelocstcr opens the cyclopropane ring. The polarity of this process corresponds to that in the formal synthon B because the cyclopropyl carbons are electrophilic. The product of the ringopening step is a stabilized Wittig ylide, which can react with the ketone carbonyl to form the carbocyclic ring. [Pg.1171]

Under suitable conditions, this can be a useful preparative method for cyclopropanes another preparative trapping reaction of CC12 is its electrophilic attack on phenols in the Reimer-Tiemann reaction (p. 290). [Pg.267]

As it is known from experience that the metal carbenes operating in most catalyzed reactions of diazo compounds are electrophilic species, it comes as no surprise that only a few examples of efficient catalyzed cyclopropanation of electron-poor alkeiies exist. One of those examples is the copper-catalyzed cyclopropanation of methyl vinyl ketone with ethyl diazoacetate 140), contrasting with the 2-pyrazoline formation in the purely thermal reaction (for failures to obtain cyclopropanes by copper-catalyzed decomposition of diazoesters, see Table VIII in Ref. 6). [Pg.125]

In contrast to ethyl diazoacetate, diethyl diazomalonate reacts with allyl bromide in the presence of Rh2(OAc)4 to give the ylide-derived diester favored by far over the cyclopropane (at 60 °C 93 7 ratio). This finding bespeaks the greater electrophilic selectivity of the carbenoid derived from ethyl diazomalonate. For reasons unknown, this property is not expressed, however, in the reaction with allyl chloride, as the carbenoids from both ethyl diazoacetate and diethyl diazomalonate exhibit a similarly high preference for cyclopropanation. [Pg.136]


See other pages where Cyclopropane, electrophilic reactions is mentioned: [Pg.801]    [Pg.167]    [Pg.287]    [Pg.473]    [Pg.894]    [Pg.21]    [Pg.125]    [Pg.65]    [Pg.8]    [Pg.61]    [Pg.88]    [Pg.88]    [Pg.140]    [Pg.1284]    [Pg.475]    [Pg.408]    [Pg.95]    [Pg.124]    [Pg.309]    [Pg.927]   
See also in sourсe #XX -- [ Pg.293 ]




SEARCH



Cyclopropanation reaction

Cyclopropanes reaction

Cyclopropanes reaction with electrophiles

Electrophiles cyclopropane/cyclobutane reactions

Electrophilic Addition and Isomerization Reactions of Cyclopropanes

Electrophilic cyclopropanes

Electrophilic cyclopropanes reaction with carbon nucleophiles

Electrophilic cyclopropanes reaction with halides

Electrophilic cyclopropanes reaction with organometallic compound

Electrophilic reactions cyclopropanation

Electrophilic reactions cyclopropanation

© 2024 chempedia.info