Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloadditions, radical cation cross-addition reactions

Despite the demonstrated utility of alkene radical cation cycloadditions, little kinetic data for these reactions are currently available. However, two recent studies have provided rate constants for the initial step in the cyclobutanation or Diels-Alder reactions of a number of styrene radical cations.Previous work by Bauld had shown that the rrradical cation reacts with a variety of alkenes to generate either cyclobutane or Diels—Alder adducts (Eqs. 23, 24) 110 j, g [jnetic data for the styrene radical cation cycloadditions, in combination with the dimerization results discussed above, provide a detailed assessment of the effects of radical cation and alkene structure on dimerization and cross addition reactions. [Pg.85]

Bauld and coworkers, especially, developed the analogous Diels-Alder (4 + 2) cycloaddition reactions. These reactions are conveniently catalyzed by tris(4-bromophenyl)aminium hexachloroantimonate (78) or by photosensitization with aromatic nitriles. The radical cation-catalyzed Diels-Alder reaction is far faster than the uncatalyzed one, and leads to some selectivity for attack at the least substituted double bond for the monoene component (Scheme 18, 79 —> 80), but only modest endo selectivity (e- and x-80) [105]. Cross reactions with two dienes proved to be notably less sensitive to inhibition by steric hindrance of alkyl groups substituted on the double bonds than the uncatalyzed reactions, as cyclohexadiene adds detectably even to the trisubstituted double bond of 2-methylhexadiene (82), producing both 83 and 84. Dienes such as 85 react with donor-substituted olefins (86) to principally give the vinylcyclobutene products 87, but they may be thermally rearranged to the cyclohexene product 88 in good yield [105]. Schmittel and coworkers have studied the cation radical catalyzed Diels-Alder addition of both... [Pg.442]

An intriguing competition arises in the context of cation radical cycloadditions (as in the context of Diels-Alder cycloadditions) which involve at least one conjugated diene component. Since both cyclobutanation and Diels-Alder addition are extremely facile reactions on the cation radical potential energy surface, it would not be surprising to find a mixture of cyclobutane (CB) and Diels-Alder (DA) addition to the diene component in such cases. Even in the cyclodimerization of 1,3-cyclohexadiene, syn and anti cyclobutadimers are observed as 1 % of the total dimeric product. Incidentally, the DA dimers have been shown not to arise indirectly via the CB dimers in this case [58]. The cross addition of tw 5-anethole to 1,3-cyclohexadiene also proceeds directly and essentially exclusively to the Diels-Alder adducts [endo > exo). Similarly, additions to 1,3-cyclopentadiene yield essentially only Diels-Alder adducts. However, additions to acyclic dienes, which typically exist predominantly in the s-trans conformation which is inherently unsuitable for Diels Alder cycloaddition, can yield either exclusively CB adducts, a mixture of CB and DA adducts or essentially exclusively DA adducts (Scheme 26) [59]. [Pg.822]

The data on cycloadditions of alkene radical cations indicate that dimerization will usually compete efficiently with cross additions and demonstrate the necessity for obtaining detailed kinetic data in order to design appropriate synthetic methods based on radical cation chemistry. The mechanistic data obtained from both time-resolved and steady-state experiments demonstrate the complexity of cycloaddition chemistry. This may be a particular limitation in the use of cycloaddition reactions in the design of mechanistic probes for assessing whether a particular reaction involves radical cation intermediates. The results also highlight the importance of using both product studies and the kinetic and mechanistic data obtained from time-resolved methods to develop a detailed understanding of the reactions of radical cations. [Pg.98]


See other pages where Cycloadditions, radical cation cross-addition reactions is mentioned: [Pg.74]    [Pg.817]   
See also in sourсe #XX -- [ Pg.74 , Pg.91 ]




SEARCH



Addition 1,3-cycloadditions

Addition cationic

Addition reactions cycloaddition

Addition/cycloaddition

Cation 2 + 2-cycloaddition

Cation cycloadditions

Cationic reactions

Cations radical cycloaddition

Cycloaddition reactions cations

Cycloadditions, radical cation

Radical cation reactions

Radical cations cycloaddition reaction

Radical reaction addition

Radicals cycloadditions

© 2024 chempedia.info