Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reaction catalysis

The reaction of dihalocarbenes with isoprene yields exclusively the 1,2- (or 3,4-) addition product, eg, dichlorocarbene CI2C and isoprene react to give l,l-dichloro-2-methyl-2-vinylcyclopropane (63). The evidence for the presence of any 1,4 or much 3,4 addition is inconclusive (64). The cycloaddition reaction of l,l-dichloro-2,2-difluoroethylene to isoprene yields 1,2- and 3,4-cycloaddition products in a ratio of 5.4 1 (65). The main product is l,l-dichloro-2,2-difluoro-3-isopropenylcyclobutane, and the side product is l,l-dichloro-2,2-difluoro-3-methyl-3-vinylcyclobutane. When the dichlorocarbene is generated from CHCl plus aqueous base with a tertiary amine as a phase-transfer catalyst, the addition has a high selectivity that increases (for a series of diolefins) with a decrease in activity (66) (see Catalysis, phase-TRANSFEr). For isoprene, both mono-(l,2-) and diadducts (1,2- and 3,4-) could be obtained in various ratios depending on which amine is used. [Pg.465]

We are now standing in the middle of the next step of the development of cycloaddition reactions - catalytic and catalytic enantioselective versions. The last two decades have been important in catalysis - how can we increase the reaction rate, and the chemo-, regio, diastereo-, and enantioselectivity of cycloaddition reactions. Metal catalysis can meet all these requirements ... [Pg.2]

The author has been involved for quite a long time in the study of Lewis acid catalysis of 1,3-dipolar cycloaddition reactions. From his research group, a series of methodologies directed to the Lewis acid-mediated stereochemical and regiochem-ical control of 1,3-dipolar cycloaddition reactions has been reported this includes ... [Pg.248]

The final class of reactions to be considered will be the [4 + 2]-cycloaddition reaction of nitroalkenes with alkenes which in principle can be considered as an inverse electron-demand hetero-Diels-Alder reaction. Domingo et al. have studied the influence of reactant polarity on the reaction course of this type of reactions using DFT calculation in order to understand the regio- and stereoselectivity for the reaction, and the role of Lewis acid catalysis [29]. The reaction of e.g. ni-troethene 15 with an electron-rich alkene 16 can take place in four different ways and the four different transition-state structures are depicted in Fig. 8.16. [Pg.320]

The most frequently encountered, and most useful, cycloaddition reactions of silyl enol ethers are Diels-Alder reactions involving silyloxybutadicncs (Chapter 18). Danishefsky (30) has reviewed his pioneering work in this area, and has extended his studies to include heterodienophiles, particularly aldehydes. Lewis acid catalysis is required in such cases, and substantial asymmetric induction can be achieved using either a chiral lanthanide catalyst or an a-chiral aldehyde. [Pg.66]

Epoxidations of chiral allenamides lead to chiral nitrogen-stabilized oxyallyl catioins that undergo highly stereoselective (4 + 3) cycloaddition reactions with electron-rich dienes.6 These are the first examples of epoxidations of allenes, and the first examples of chiral nitrogen-stabilized oxyallyl cations. Further elaboration of the cycloadducts leads to interesting chiral amino alcohols that can be useful as ligands in asymmetric catalysis (Scheme 2). [Pg.79]

Several aluminum- and titanium-based compounds have been supported on silica and alumina [53]. Although silica and alumina themselves catalyze cycloaddition reactions, their catalytic activity is greatly increased when they complex a Lewis acid. Some of these catalysts are among the most active described to date for heterogeneous catalysis of the Diels-Alder reactions of carbonyl-containing dienophiles. The Si02-Et2AlCl catalyst is the most efficient and can be... [Pg.115]

Dihydrothiopyrans have also been prepared by cycloaddition between a,jS-unsaturated thioketones and carbonyl-activated dienophiles under Lewis-acid catalysis [78]. A marked dependence of the reaction yield on the catalyst was observed. The results of the cycloaddition reaction of thioketone 77 with methyl metacrylate, catalyzed by different catalysts, are illustrated in Equation 3.24. [Pg.123]

Attempts to Catalyze [3 + 2]-Cycloaddition of Nitronates to Olefins In Section 3.2.1.2.2.2, it was noted that [4+ 2]-cycloaddition reactions of nitro-alkenes and alkenes proceed much faster in the presence of LA. At the same time, in the presence of LA, nitronates can rapidly decompose (49) or undergo rearrangements (see Section 3.4.2.5.6 ). Hence, it is not surprising that catalysis of 1,3-dipolar cycloaddition reactions of nitronates with alkenes by LA has attracted little attention until very recent times. An exception is the study by the Japanese... [Pg.550]

Allene (1) and its alkyl and aryl derivatives have long been used in organic synthesis, especially in cycloaddition reactions, whether these are thermally [5] or photochemi-cally induced and involve metal catalysis or polar reagents [2], Potentially more interesting derivatives arise when the allene group is connected with other unsaturated building blocks as shown in Scheme 5.1. [Pg.186]

Diels-Alder Reactions The organocatalytic Diels-Alder reaction of a,P-unsaturated carbonyl compounds can be performed either via iminium (see Section 11.3) or enamine catalysis. The first highly selective enamine-promoted cycloaddition reaction was reported by Jprgensen and coworkers, who developed an amine-catalyzed inverse-electron-demand hetero-Diels-Alder (HDA) reaction (Scheme ll.lOa). ... [Pg.329]

The rhodium( 11)-catalyzed formation of 1,3-dipoles has played a major role in facilitating the use of the dipolar cycloaddition reaction in modern organic synthesis. This is apparent from the increasing number of applications of this chemistry for the construction of heterocyclic and natural product ring systems. This chapter initially focuses on those aspects of rhodium(II) catalysis that control dipole formation and reactivity, and concludes with a sampling of the myriad examples that exist in the Hterature today. [Pg.433]

Compared to micellar bimolecular reactions involving reactive surfactant counterions, considerably less work has been done on micellar bimolecular reactions involving two neutral reactants. We will discuss here micellar effects on cycloaddition reactions though this is by no means the only system for which micellar catalysis has been investigated (see, e.g., Bonollo et al. °). [Pg.27]

The initial work on the asymmetric [4-1-2] cycloaddition reactions of A -sulfinyl compounds and dienes was performed with chiral titanium catalysts, but low ee s were observed <2002TA2407, 2001TA2937, 2000TL3743>. A great improvement in the enantioselectivity for the reaction of AT-sulfinyl dienophiles 249 or 250 and acyclic diene 251 or 1,3-cyclohexadiene 252 was observed in the processes involving catalysis with Cu(ll) and Zn(ii) complexes of Evans bis(oxazolidinone) (BOX) ligands 253 and 254 <2004JOC7198> (Scheme 34). While the preparation of enantio-merically enriched hetero-Diels-Alder adduct 255 requires a stoichometric amount of chiral Lewis acid complex, a catalytic asymmetric synthesis of 44 is achieved upon the addition of TMSOTf. [Pg.552]

Nitrones are the most widely studied of the 1,3-dipoles in the field of catalyzed enantioselective 1,3-dipolar cycloaddition reactions. Effective catalysis using a variety of chiral Lewis acid catalysts has been reported for the nitrone cycloaddition... [Pg.794]

A chelating enone employed in a Lewis acid catalyzed nitrone cycloaddition reaction should result in a rate enhancement. The first example of such catalysis... [Pg.795]


See other pages where Cycloaddition reaction catalysis is mentioned: [Pg.158]    [Pg.474]    [Pg.158]    [Pg.474]    [Pg.212]    [Pg.78]    [Pg.206]    [Pg.320]    [Pg.70]    [Pg.145]    [Pg.535]    [Pg.809]    [Pg.516]    [Pg.332]    [Pg.395]    [Pg.434]    [Pg.28]    [Pg.3]    [Pg.34]    [Pg.756]    [Pg.804]    [Pg.64]    [Pg.65]    [Pg.13]    [Pg.44]    [Pg.603]    [Pg.651]    [Pg.328]   


SEARCH



1.3- dipolar cycloaddition reactions catalysis

Catalysis 3 + 2-cycloadditions

Catalysis cycloaddition

Cycloaddition reactions ketenes, carbene catalysis

Nickel catalysis cycloaddition reactions

© 2024 chempedia.info