Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenes cycloaddition

Cycloadditions, Carbene Additions and Diels-Alder Reactions... [Pg.149]

The ring opening of 2//-azirines to yield vinylnitrenes on thermolysis, or nitrile ylides on photolysis, also leads to pyrrole formation (B-82MI30301). Some examples proceeding via nitrile ylides are shown in Scheme 92. The consequences of attempts to carry out such reactions in an intramolecular fashion depend not only upon the spatial relationship of the double bond and the nitrile ylide, but also upon the substituents of the azirine moiety since these can determine whether the resulting ylide is linear or bent. The HOMO and second LUMO of a bent nitrile ylide bear a strong resemblance to the HOMO and LUMO of a singlet carbene so that 1,1-cycloadditions occur to carbon-carbon double bonds rather than the 1,3-cycloadditions needed for pyrrole formation. The examples in Scheme 93 provide an indication of the sensitivity of these reactions to structural variations. [Pg.140]

Various carbene-transfer reactions can be used with both electron-rich and electron-poor alkynes to make fluorinated cyclopropenes [9. 13, 79, 80, 81, 82] (Table 4). Haloacetylenes are too thermally unstable for most cycloaddition conditions, and simple fluorinated cyclopropenes are made by other methods [32, 45, 83, 84] (equations 30-32). [Pg.777]

Trifluoromethyl-substituted diazonium betaines [176]. Synthetic routes to trifluoromethyl-substituted diazo alkanes, such as 2,2,2-trifluorodiazoethane [ 177, 7 78, 179] and alkyl 3,3,3-trifluoro-2-diazopropionates [24], have been developed Rhodium-catalyzed decomposition of 3,3,3-tnfluoro-2-diazopropionates offers a simple preparative route to highly reactive carbene complexes, which have an enormous synthetic potential [24] [3-1-2] Cycloaddition reactions were observed on reaction with nitnles to give 5-alkoxy-4-tnfluoromethyloxazoles [750] (equation 41)... [Pg.862]

Silylketenes in formation of (3-lactones and (3-lactams 98JCS(P1)2105. Syntheses of (3-lactams, (3-lactones, and 1,3- and 1,4-diazetidinediones by pho-tochemically induced cycloaddition reactions of chromium carbene complexes with imines, aldehydes, and azo compounds 97T4105. [Pg.245]

Free carbenes based on 1,2,4-triazole are not as numerous as those based on imidazole (70ZN(B)1421, 95AGE1021, 97JA6668, 98JA9100). The carbene complex 169 (Ar = Ph, p-Tol) is prepared by the [3 + 2] cycloaddition route from [W(CO)j(C+=NC-HCOOEt)]- and aryldiazonium (930M3241). Oxidative decomplexation causes tautomerization of the 1,2,4-triazole ligand, the products being 170 (Ar= Ph, i-Tol). [Pg.159]

By a photochemically induced elimination of CO, a chromium carbene complex with a free coordination site is generated. That species can coordinate to an alkyne, to give the alkyne-chromium carbonyl complex 4. The next step is likely to be a cycloaddition reaction leading to a four-membered ring compound 5. A subsequent electrocyclic ring opening and the insertion of CO leads to the vinylketene complex 6 ... [Pg.98]

Cyclopropane-fused chlorins derived from tetraphenylporphyrins can be prepared by the aforementioned carbene cycloaddition route, e.g. conjugative addition of nialonate to nickel(II) nitrotetraphenylporphyrin 14 (M = Ni) yields the cyclopropane-fused chlorin 15.22... [Pg.622]

Fischer-type carbene complexes, generally characterized by the formula (CO)5M=C(X)R (M=Cr, Mo, W X=7r-donor substitutent, R=alkyl, aryl or unsaturated alkenyl and alkynyl), have been known now for about 40 years. They have been widely used in synthetic reactions [37,51-58] and show a very good reactivity especially in cycloaddition reactions [59-64]. As described above, Fischer-type carbene complexes are characterized by a formal metal-carbon double bond to a low-valent transition metal which is usually stabilized by 7r-acceptor substituents such as CO, PPh3 or Cp. The electronic structure of the metal-carbene bond is of great interest because it determines the reactivity of the complex [65-68]. Several theoretical studies have addressed this problem by means of semiempirical [69-73], Hartree-Fock (HF) [74-79] and post-HF [80-83] calculations and lately also by density functional theory (DFT) calculations [67, 84-94]. Often these studies also compared Fischer-type and... [Pg.6]

Keywords Fischer carbenes Template synthesis Cocyclization Cycloaddition Cyclopentadienes Cyclopentenones Domino reactions... [Pg.22]

The possibility of being involved in olefin metathesis is one of the most important properties of Fischer carbene complexes. [2+2] Cycloaddition between the electron-rich alkene 11 and the carbene complex 12 leads to the intermediate metallacyclobutane 13, which undergoes [2+2] cycloreversion to give a new carbene complex 15 and a new alkene 14 [19]. The (methoxy)phenylcar-benetungsten complex is less reactive in this mode than the corresponding chromium and molybdenum analogs (Scheme 3). [Pg.24]

Scheme 4 Access to various a,/ -unsaturated carbene complexes from alkynylcarbene complexes 23. A 1,3-Dipolar cycloaddition. B Diels-Alder reaction. C Ene reaction. D [2+2] Cycloaddition. E Michael-type addition followed by cyclization. F Michael-type additions... Scheme 4 Access to various a,/ -unsaturated carbene complexes from alkynylcarbene complexes 23. A 1,3-Dipolar cycloaddition. B Diels-Alder reaction. C Ene reaction. D [2+2] Cycloaddition. E Michael-type addition followed by cyclization. F Michael-type additions...
The novel highly substituted spiro[4.4]nonatrienes 98 and 99 are produced by a [3+2+2+2] cocyclization with participation of three alkyne molecules and the (2 -dimethylamino-2 -trimethylsilyl)ethenylcarbene complex 96 (Scheme 20). This transformation is the first one ever observed involving threefold insertion of an alkyne and was first reported in 1999 by de Meijere et al. [81]. The structure of the product was eventually determined by X-ray crystal structure analysis of the quaternary ammonium iodide prepared from the regioisomer 98 (Ar=Ph) with methyl iodide. Interestingly, these formal [3+2+2+2] cycloaddition products are formed only from terminal arylacetylenes. In a control experiment with the complex 96 13C-labeled at the carbene carbon, the 13C label was found only at the spiro carbon atom of the products 98 and 99 [42]. [Pg.37]

The insertion of alkynes into a chromium-carbon double bond is not restricted to Fischer alkenylcarbene complexes. Numerous transformations of this kind have been performed with simple alkylcarbene complexes, from which unstable a,/J-unsaturated carbene complexes were formed in situ, and in turn underwent further reactions in several different ways. For example, reaction of the 1-me-thoxyethylidene complex 6a with the conjugated enyne-ketimines and -ketones 131 afforded pyrrole [92] and furan 134 derivatives [93], respectively. The alkyne-inserted intermediate 132 apparently undergoes 671-electrocyclization and reductive elimination to afford enol ether 133, which yields the cycloaddition product 134 via a subsequent hydrolysis (Scheme 28). This transformation also demonstrates that Fischer carbene complexes are highly selective in their reactivity toward alkynes in the presence of other multiple bonds (Table 6). [Pg.44]

Cycloaddition Reactions of Group 6 Fischer Carbene Complexes... [Pg.59]

Keywords Fischer carbene complexes Cycloaddition reactions Carbocycles Heterocycles... [Pg.60]

Catalytic cyclopropanation of alkenes has been reported by the use of diazoalkanes and electron-rich olefins in the presence of catalytic amounts of pentacarbonyl(rj2-ris-cyclooctene)chromium [23a,b] (Scheme 6) and by treatment of conjugated ene-yne ketone derivatives with different alkyl- and donor-substituted alkenes in the presence of a catalytic amount of pentacarbon-ylchromium tetrahydrofuran complex [23c]. These [2S+1C] cycloaddition reactions catalysed by a Cr(0) complex proceed at room temperature and involve the formation of a non-heteroatom-stabilised carbene complex as intermediate. [Pg.66]

The reactions of Fischer carbene complexes with 1,3-dienes (carbodienes or heterodienes) lead to the formation of cyclic products with different ring sizes depending upon both the nature of the reaction partners and the reaction conditions. Between these synthetically useful transformations are found [2c+2s], [3C+2S], [4S+1C], [3S+3C], [4S+2C], [4S+3C] and [2S+1C+1C0] cycloaddition reactions which will be summarised further on, in addition to the [2S+1C] cycloaddition processes here described. [Pg.66]


See other pages where Carbenes cycloaddition is mentioned: [Pg.257]    [Pg.347]    [Pg.529]    [Pg.682]    [Pg.257]    [Pg.347]    [Pg.529]    [Pg.682]    [Pg.265]    [Pg.888]    [Pg.767]    [Pg.146]    [Pg.155]    [Pg.242]    [Pg.680]    [Pg.22]    [Pg.22]    [Pg.24]    [Pg.25]    [Pg.28]    [Pg.50]    [Pg.60]    [Pg.61]    [Pg.61]    [Pg.62]    [Pg.63]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



1.3- Dienes cycloaddition reactions with alkynyl carbene

Alkyne/Fischer carbene cycloaddition

Carbene catalysis ketene cycloadditions

Carbene complexes cycloaddition

Carbene cycloaddition with alkene

Carbenes 1+2+2] cycloaddition reactions

Carbenes cycloaddition with

Carbenes cycloadditions

Carbenes cycloadditions with alkenes

Carbenes diazoalkane cycloaddition reactions

Carbenes, alkynyltransition metal complexes 2 + 2] cycloaddition reactions

Carbenes, alkynyltransition metal complexes cycloaddition reactions with 1,3-dienes

Carbenes, vinyladducts 4 + 3] cycloaddition reactions

Carbenes. Methylene. Cycloaddition

Cheletropic reactions carbene cycloadditions

Cycloaddition Fischer carbenes

Cycloaddition of chromium-carbene complexes with imines

Cycloaddition reactions Chromium carbene complexes

Cycloaddition reactions carbene complexes

Cycloaddition reactions carbene transition metal complexes

Cycloaddition reactions ketenes, carbene catalysis

Cycloadditions carbene synthesis

Cycloadditions carbene-alkene cycloaddition

Cycloadditions chromium - carbene complexes

Cycloadditions of carbenes

Cyclopropyl carbene complexes cycloadditions

Fischer carbene complexes alkynyl, cycloaddition

Ketenes cycloaddition, carbene catalysis

Propene, 3-diazo cycloaddition reactions alkynyl carbene complexes

© 2024 chempedia.info