Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbene complexes cycloaddition

Keywords Fischer carbene complexes Cycloaddition reactions Carbocycles Heterocycles... [Pg.60]

Trifluoromethyl-substituted diazonium betaines [176]. Synthetic routes to trifluoromethyl-substituted diazo alkanes, such as 2,2,2-trifluorodiazoethane [ 177, 7 78, 179] and alkyl 3,3,3-trifluoro-2-diazopropionates [24], have been developed Rhodium-catalyzed decomposition of 3,3,3-tnfluoro-2-diazopropionates offers a simple preparative route to highly reactive carbene complexes, which have an enormous synthetic potential [24] [3-1-2] Cycloaddition reactions were observed on reaction with nitnles to give 5-alkoxy-4-tnfluoromethyloxazoles [750] (equation 41)... [Pg.862]

Silylketenes in formation of (3-lactones and (3-lactams 98JCS(P1)2105. Syntheses of (3-lactams, (3-lactones, and 1,3- and 1,4-diazetidinediones by pho-tochemically induced cycloaddition reactions of chromium carbene complexes with imines, aldehydes, and azo compounds 97T4105. [Pg.245]

Free carbenes based on 1,2,4-triazole are not as numerous as those based on imidazole (70ZN(B)1421, 95AGE1021, 97JA6668, 98JA9100). The carbene complex 169 (Ar = Ph, p-Tol) is prepared by the [3 + 2] cycloaddition route from [W(CO)j(C+=NC-HCOOEt)]- and aryldiazonium (930M3241). Oxidative decomplexation causes tautomerization of the 1,2,4-triazole ligand, the products being 170 (Ar= Ph, i-Tol). [Pg.159]

By a photochemically induced elimination of CO, a chromium carbene complex with a free coordination site is generated. That species can coordinate to an alkyne, to give the alkyne-chromium carbonyl complex 4. The next step is likely to be a cycloaddition reaction leading to a four-membered ring compound 5. A subsequent electrocyclic ring opening and the insertion of CO leads to the vinylketene complex 6 ... [Pg.98]

Fischer-type carbene complexes, generally characterized by the formula (CO)5M=C(X)R (M=Cr, Mo, W X=7r-donor substitutent, R=alkyl, aryl or unsaturated alkenyl and alkynyl), have been known now for about 40 years. They have been widely used in synthetic reactions [37,51-58] and show a very good reactivity especially in cycloaddition reactions [59-64]. As described above, Fischer-type carbene complexes are characterized by a formal metal-carbon double bond to a low-valent transition metal which is usually stabilized by 7r-acceptor substituents such as CO, PPh3 or Cp. The electronic structure of the metal-carbene bond is of great interest because it determines the reactivity of the complex [65-68]. Several theoretical studies have addressed this problem by means of semiempirical [69-73], Hartree-Fock (HF) [74-79] and post-HF [80-83] calculations and lately also by density functional theory (DFT) calculations [67, 84-94]. Often these studies also compared Fischer-type and... [Pg.6]

The possibility of being involved in olefin metathesis is one of the most important properties of Fischer carbene complexes. [2+2] Cycloaddition between the electron-rich alkene 11 and the carbene complex 12 leads to the intermediate metallacyclobutane 13, which undergoes [2+2] cycloreversion to give a new carbene complex 15 and a new alkene 14 [19]. The (methoxy)phenylcar-benetungsten complex is less reactive in this mode than the corresponding chromium and molybdenum analogs (Scheme 3). [Pg.24]

Scheme 4 Access to various a,/ -unsaturated carbene complexes from alkynylcarbene complexes 23. A 1,3-Dipolar cycloaddition. B Diels-Alder reaction. C Ene reaction. D [2+2] Cycloaddition. E Michael-type addition followed by cyclization. F Michael-type additions... Scheme 4 Access to various a,/ -unsaturated carbene complexes from alkynylcarbene complexes 23. A 1,3-Dipolar cycloaddition. B Diels-Alder reaction. C Ene reaction. D [2+2] Cycloaddition. E Michael-type addition followed by cyclization. F Michael-type additions...
The insertion of alkynes into a chromium-carbon double bond is not restricted to Fischer alkenylcarbene complexes. Numerous transformations of this kind have been performed with simple alkylcarbene complexes, from which unstable a,/J-unsaturated carbene complexes were formed in situ, and in turn underwent further reactions in several different ways. For example, reaction of the 1-me-thoxyethylidene complex 6a with the conjugated enyne-ketimines and -ketones 131 afforded pyrrole [92] and furan 134 derivatives [93], respectively. The alkyne-inserted intermediate 132 apparently undergoes 671-electrocyclization and reductive elimination to afford enol ether 133, which yields the cycloaddition product 134 via a subsequent hydrolysis (Scheme 28). This transformation also demonstrates that Fischer carbene complexes are highly selective in their reactivity toward alkynes in the presence of other multiple bonds (Table 6). [Pg.44]

Cycloaddition Reactions of Group 6 Fischer Carbene Complexes... [Pg.59]

Catalytic cyclopropanation of alkenes has been reported by the use of diazoalkanes and electron-rich olefins in the presence of catalytic amounts of pentacarbonyl(rj2-ris-cyclooctene)chromium [23a,b] (Scheme 6) and by treatment of conjugated ene-yne ketone derivatives with different alkyl- and donor-substituted alkenes in the presence of a catalytic amount of pentacarbon-ylchromium tetrahydrofuran complex [23c]. These [2S+1C] cycloaddition reactions catalysed by a Cr(0) complex proceed at room temperature and involve the formation of a non-heteroatom-stabilised carbene complex as intermediate. [Pg.66]

The reactions of Fischer carbene complexes with 1,3-dienes (carbodienes or heterodienes) lead to the formation of cyclic products with different ring sizes depending upon both the nature of the reaction partners and the reaction conditions. Between these synthetically useful transformations are found [2c+2s], [3C+2S], [4S+1C], [3S+3C], [4S+2C], [4S+3C] and [2S+1C+1C0] cycloaddition reactions which will be summarised further on, in addition to the [2S+1C] cycloaddition processes here described. [Pg.66]

The [3S+1C] cycloaddition reaction with Fischer carbene complexes is a very unusual reaction pathway. In fact, only one example has been reported. This process involves the insertion of alkyl-derived chromium carbene complexes into the carbon-carbon a-bond of diphenylcyclopropenone to generate cyclobutenone derivatives [41] (Scheme 13). The mechanism of this transformation involves a CO dissociation followed by oxidative addition into the cyclopropenone carbon-carbon a-bond, affording a metalacyclopentenone derivative which undergoes reductive elimination to produce the final cyclobutenone derivatives. [Pg.71]

The 1,3-dipolar cycloadditions are a powerful kind of reaction for the preparation of functionalised five-membered heterocycles [42]. In the field of Fischer carbene complexes, the a,/ -unsaturated derivatives have been scarcely used in cyclo additions with 1,3-dipoles in contrast with other types of cyclo additions [43]. These complexes have low energy LUMOs, due to the electron-acceptor character of the pentacarbonyl metal fragment, and hence, they react with electron-rich dipoles with high energy HOMOs. [Pg.71]

Although most of the examples of [3S+2C] cycloaddition reactions with carbene complexes are referred to as 1,3-dipolar processes, we should include in this section another kind of non-dipolar transformation dealing with the reaction of pentacarbonyl(methoxymethylcarbene)chromium with a base followed by treatment with an epoxide in the presence of boron trifluoride. This reaction gives cyclic carbene complexes in a process that can be considered a [3S+2C] cycloaddition [44] (Scheme 14). [Pg.71]

The first [3S+2C] cycloaddition reaction using a Fischer carbene complex was accomplished by Fischer et al. in 1973 when they reported the reaction of the pentacarbonyl(ethoxy)(phenylethynyl)carbene complex of tungsten and diazomethane to give a pyrazole derivative [45]. But it was 13 years later when Chan and Wulff demonstrated that in fact this was the first example of a 1,3-dipolar cycloaddition reaction [46,47a]. The introduction of a bulky trime-thylsilyl group on the diazomethane in order to prevent carbene-carbon olefi-nation leads to the corresponding pyrazole carbene complexes in better yields (Scheme 15). [Pg.72]

The reaction of alkoxyarylcarbene complexes with alkynes mainly affords Dotz benzannulated [3C+2S+1C0] cycloadducts. However, uncommon reaction pathways of some alkoxyarylcarbene complexes in their reaction with alkynes leading to indene derivatives in a formal [3C+2S] cycloaddition process have been reported. For example, the reaction of methoxy(2,6-dimethylphenyl)chromium carbene complex with 1,2-diphenylacetylene at 100 °C gives rise to an unusual indene derivative where a sigmatropic 1,5-methyl shift is observed [60]. Moreover, a related (4-hydroxy-2,6-dimethylphenyl)carbene complex reacts in benzene at 100 °C with 3-hexyne to produce an indene derivative. However, the expected Dotz cycloadduct is obtained when the solvent is changed to acetonitrile [61] (Scheme 19). Also, Dotz et al. have shown that the introduction of an isocyanide ligand into the coordination sphere of the metal induces the preferential formation of indene derivatives [62]. [Pg.75]

A particular case of a [3C+2S] cycloaddition is that described by Sierra et al. related to the tail-to-tail dimerisation of alkynylcarbenes by reaction of these complexes with C8K (potassium graphite) at low temperature and further acid hydrolysis [69] (Scheme 24). In fact, this process should be considered as a [3C+2C] cycloaddition as two molecules of the carbene complex are involved in the reaction. Remarkable features of this reaction are (i) the formation of radical anion complexes by one-electron transfer from the potassium to the carbene complex, (ii) the tail-to-tail dimerisation to form a biscarbene anion intermediate and finally (iii) the protonation with a strong acid to produce the... [Pg.77]

Sect. 2.1.1) and [3C+2S] cyclopentene derivatives. The product distribution can be controlled by choosing the appropriate reaction conditions [72]. Moreover, the cyclopentene derivatives are the exclusive products from the coupling of fi-pyrrolyl-substituted carbene complexes [72b,c] (Scheme 25). The crucial intermediate chromacyclobutane is formed in an initial step by a [2+2] cycloaddition. This chromacyclobutane rearranges to give the rf-complex when non-coordinating solvents are used. Finally, a reductive elimination leads to the formal [3C+2S] cyclopentene derivatives. [Pg.79]

The participation of carbene/carbenoid metal complexes in [4S+1C] cycloaddition reactions is very infrequent [81]. In fact, only a few examples involving Fischer carbene complexes have been reported in recent years [82]. A remark-... [Pg.84]


See other pages where Carbene complexes cycloaddition is mentioned: [Pg.265]    [Pg.22]    [Pg.22]    [Pg.24]    [Pg.25]    [Pg.28]    [Pg.50]    [Pg.60]    [Pg.61]    [Pg.61]    [Pg.62]    [Pg.63]    [Pg.70]    [Pg.73]    [Pg.75]    [Pg.76]   


SEARCH



Carbenes, alkynyltransition metal complexes 2 + 2] cycloaddition reactions

Carbenes, alkynyltransition metal complexes cycloaddition reactions with 1,3-dienes

Cycloaddition carbenes

Cycloaddition of chromium-carbene complexes with imines

Cycloaddition reactions Chromium carbene complexes

Cycloaddition reactions carbene complexes

Cycloaddition reactions carbene transition metal complexes

Cycloadditions chromium - carbene complexes

Cycloadditions complexes

Cyclopropyl carbene complexes cycloadditions

Fischer carbene complexes alkynyl, cycloaddition

Propene, 3-diazo cycloaddition reactions alkynyl carbene complexes

© 2024 chempedia.info