Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition Boron Lewis acid catalyzed

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

Kociehski s group assembled the 3-lactone segment utilizing a Lewis acid-catalyzed [2 + 2] cycloaddition strategy. In the presence of a catalytic amount of boron trifluoride etherate, the [2 + 2] cycloaddition between aldehyde 28 and trimethylsilylketene 29 took place rapidly and cleanly to give a mixture of diastereomers of P-lactone 30. After a delicate desilylation and a flash chromatography, the desired diastereomer 31 was obtained in 55% yield. [Pg.156]

Lewis acid-catalyzed [2+2] cycloaddition reactions of Ar-pivaloylaldiruincs 181 gave azetidines 182 and 183 (Scheme 38) <1995CL789>. Boron trifluoride etherate proved to be a better catalyst than zinc chloride, affording azetidines 182 and 183 in better yields. This transformation has been explained through the intermediacy of a /3-silyl cation. [Pg.27]

Early applications of chiral Lewis acid catalyzed stereoselective Diels Alder reactions used either boron- or aluminum-derived systems in carbocyclic ring formation18 1Q, or studied the effect of chiral shift reagents, such as Eu(hfc)3, in hetero-Diels-Alder cycloadditions of carbonyl compounds to dienes20 23,77, 78. The latter type of transition metal catalyzed addition is classified as heterocarboration and is described in Section 1.5.8.4. [Pg.467]

Covalent fluondes of group 3 and group 5 elements (boron, tin, phosphorus, antimony, etc ) are widely used m organic synthesis as strong Lewis acids Boron trifluoride etherate is one of the most common reagents used to catalyze many organic reactions. A representative example is its recent application as a catalyst in the cycloadditions of 2-aza-l,3-dienes with different dienophiles [14] Boron trifluoride etherate and other fluonnated Lewis acids are effective activators of the... [Pg.944]

Chiral boron(III) Lewis acid catalysts have also been used for enantioselective cycloaddition reactions of carbonyl compounds [17]. The chiral acyloxylborane catalysts 9a-9d, which are also efficient catalysts for asymmetric Diels-Alder reactions [17, 18], can also catalyze highly enantioselective cycloaddition reactions of aldehydes with activated dienes. The arylboron catalysts 9b-9c which are air- and moisture-stable have been shown by Yamamoto et al. to induce excellent chiral induction in the cycloaddition reaction between, e.g., benzaldehyde and Danishefsky s dienes such as 2b with up to 95% yield and 97% ee of the cycloaddition product CIS-3b (Scheme 4.9) [17]. [Pg.159]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

Another unusual two-step [3 + 2] cycloaddition involves the ring expansion of tert-bu-tyl-l-vinylcyclopropane-l-carboxylate 148 to the a-ethylidenebutyrolactone 149 (Scheme 14.18) [108]. When the reaction is catalyzed by boron tribromide the monocycHc product 149 is formed, but when the Lewis acidic oxidant VOCl2(OEt) is used, a very unusual dimeric product (150) is formed. [Pg.325]

Lewis acids such as zinc chloride, boron trifluoride, aluminum chloride, and diethylaluminum chloride catalyze Diels-Alder reactions.8 The catalytic effect is the result of coordination of the Lewis acid with the dienophile. The complexed dienophile is more electrophilic and more reactive toward electron-rich dienes. The mechanism of the cycloaddition is still believed to be concerted, and high stereoselectivity is observed.9 10 Lewis acid catalysts also usually increase the regioselectivity of the reaction. [Pg.336]

In consideration of conceivable strategies for the more direct construction of these derivatives, nitriles can be regarded as simple starting materials with which the 3+2 cycloaddition of acylcarbenes would, in a formal sense, provide the desired oxazoles. Oxazoles, in fact, have previously been obtained by the reaction of diazocarbonyl compounds with nitriles through the use of boron trifluoride etherate as a Lewis acid promoter. Other methods for attaining oxazoles involve thermal, photochemical, or metal-catalyzed conditions.12 Several recent studies have indicated that many types of rhodium-catalyzed reactions of diazocarbonyl compounds proceed via formation of electrophilic rhodium carbene complexes as key intermediates rather than free carbenes or other types of reactive intermediates.13 If this postulate holds for the reactions described here, then the mechanism outlined in Scheme 2 may be proposed, in which the carbene complex 3 and the adduct 4 are formed as intermediates.14... [Pg.235]

The influence of Lewis acids on the diastereoselectivity of the cycloaddition of /f-alkoxyalde-hydes has also been studied35. Magnesium bromide, highly effective for a-alkoxyaldehydes, fails in the case of the cycloaddition of aldehyde 10 to diene 2 and the reaction does not exhibit any selectivity, probably due to a change of mechanism to Mukaiyama s aldol type. One reason may be the change of solvent from tetrahydrofuran to a mixture of benzene and diethyl ether. The additions of aldehyde 10 to other dienes are more selective but diastereoselectivity is still much lower than for the a-alkoxy aldehydes. Boron trifluoride-diethyl etherate complex also leads to a mixture of four possible products. Excellent selectivity is achieved for the titanium(IV) chloride catalyzed addition of aldehyde 10a to diene 2b, 11c is obtained as the only product. [Pg.725]

It has been observed that cycloadditions of methyl cinnamate with simple alkenes in dilute solution are catalyzed by Lewis acids such as boron trifluoride86. The mechanism of these reactions involves electronic excitation of a ground state methyl cinnamate-Lewis acid complex followed by reaction of the excited complex with ground state olefin. The catalytic effect of the Lewis acid results from an increase either in excited state lifetime or reactivity of the complexed versus free ester. This was discovered in an investigation of the photochemical reactivity of coumarin in the presence of Lewis acids87. [Pg.906]


See other pages where Cycloaddition Boron Lewis acid catalyzed is mentioned: [Pg.177]    [Pg.121]    [Pg.328]    [Pg.505]    [Pg.179]    [Pg.431]    [Pg.179]    [Pg.121]    [Pg.474]   
See also in sourсe #XX -- [ Pg.196 , Pg.197 ]




SEARCH



Boronic Lewis acidity

Cycloaddition Lewis acids

Lewis acid-catalyzed

Lewis acids, -cycloadditions

Lewis boron

Lewis catalyzed

© 2024 chempedia.info