Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic nitronates intermolecular cycloadditions

Six-membered Cyclic Nitronates As can be seen from Chart 3.14, the range of olefins involved in intermolecular [3 + 2] -cycloadditions with six-membered nitronates, is substantially wider (49, 91, 92, 97, 138, 143, 146, 151, 156, 160-162, 370-373) compared to five-membered nitronates. [Pg.549]

It has long been recognized that nitrone cycloadditions may allow access to spirocyclic ring systems. Such systems are inherently difficult to synthesize by conventional methods, yet are a structural component of a number of biologically active natural materials. Two common strategies have emerged for spirocycle generation from exocyclic or endocyclic nitrones (Scheme 1.45). In the exocyclic version, the carbon atom (arrowed) of the nitrone C=N double bond of dipole 209 carries a cyclic substitutent and thus an intermolecular cycloaddition reaction will... [Pg.37]

Elsewhere, Heaney et al. (313-315) found that alkenyloximes (e.g., 285), may react in a number of ways including formation of cyclic nitrones by the 1,3-APT reaction (Scheme 1.60). The benzodiazepinone nitrones (286) formed by the intramolecular 1,3-APT will undergo an intermolecular dipolar cycloaddition reaction with an external dipolarophile to afford five,seven,six-membered tricyclic adducts (287). Alternatively, the oximes may equilibrate to the corresponding N—H nitrones (288) and undergo intramolecular cycloaddition with the alkenyl function to afford five,six,six-membered tricyclic isoxazolidine adducts (289, R = H see also Section 1.11.2). In the presence of an electron-deficient alkene such as methyl vinyl ketone, the nitrogen of oxime 285 may be alkylated via the acyclic version of the 1,3-APT reaction and thus afford the N-alkylated nitrone 290 and the corresponding adduct 291. In more recent work, they prepared the related pyrimidodiazepine N-oxides by oxime-alkene cyclization for subsequent cycloaddition reactions (316). Related nitrones have been prepared by a number of workers by the more familiar route of condensation with alkylhydroxylamines (Scheme 1.67, Section 1.11.3). [Pg.51]

Dipolar cycloaddition reactions occurreadily even with non-activated dipo-larophiles, such as isolated alkenes. This contrasts with the Diels-Alder reaction, particularly for intermolecular reactions, in which an activated alkene as the dienophile is required. Like the Diels-Alder reaction, [3+2] cycloaddition reactions of 1,3-dipoles are reversible, although in most cases it is the kinetic product that is isolated. For the intermolecular cycloaddition of nitrile oxides or nitrones, two of the most frequently used 1,3-dipoles, to monosubstituted or 1,1-disubstituted alkenes (except highly electron-deficient alkenes), the oxygen atom of the 1,3-dipole becomes attached to the more highly substituted carbon atom of the alkene double bond. Hence the 5-substituted isoxazolidine 206 is generated from the cycloaddition of the cyclic nitrone 205 with propene (3.136). Reductive... [Pg.225]

The stereochemical course of the intermolecular 3 + 2-cycloadditions between two cyclic nitronates and a series of dipolarophiles has been studied. The diastereo-selective intramolecular cycloaddition of vinylsilane and silylnitronates (63) provides an effective control of remote acyclic asymmetry (Scheme 23). ... [Pg.511]

Nitronate Facial Selectivity in Intermolecular [3+2] Cycloadditions of Nitronates The majority of asymmetric dipolar cycloadditions of nitronates have been investigated in the context of the tandem [4 + 2]/[3 + 2] cycloadditions of nitroalkenes. With chiral, cyclic nitronates, the facial selectivity is primarily controlled by the steric environment that defines the diastereotopic faces of the nitronate. Nitronates obtained from [4 + 2] cycloadditions with vinyl ethers contain an acetal stereocenter that controls the approach of the dipolarophile. Nitronate 103 (Scheme 16.26) reacts with dimethyl maleate to produce predominantly nitroso acetal distal- QA through a distal approach of the dipolarophile [23]. The proximal approach provided the minor isomer with dr 7/l. Calculations suggest that the distal approach of the dipolarophile that leads directly to a chair-Uke conformation of the six-membered ring is slightly favored over the proximal approach [121]. [Pg.489]

I. Intermolecular [3+2]-Addition of Nitronates to Olefins Of all known types of nitronates (see Section 3.2), alkyl- and silyl nitronates as well as cyclic C5-C6 nitronates are involved in [3+ 2]-cycloaddition reactions. Detailed comparative kinetic studies for different types of nitronates have not been reported. However, a few data (162, 336, 337) allow one to deduce some sequences (Chart 3.10). [Pg.544]

However, far the most powerful synthetical methodology involving cycloaddition chemistry of nitroalkenes is the combination of a hetero Diels-Alder reaction with a 1,3-dipolar cycloaddition of the resulting nitrone. Up to six stereo-genic centers may be constructed in the course of this protocol, and a multitude of preparative options results from applying either intra- or intermolecular varieties of the single steps and from the different modes to connect the resulting cyclic entities (Fig. 4-13). [Pg.71]


See other pages where Cyclic nitronates intermolecular cycloadditions is mentioned: [Pg.282]    [Pg.171]    [Pg.108]    [Pg.454]    [Pg.258]    [Pg.55]    [Pg.290]    [Pg.568]    [Pg.31]   


SEARCH



Cyclic nitronates

Cyclic nitrone

Cyclic nitrones

Nitronates cycloadditions

Nitronates intermolecular

Nitronates intermolecular cycloadditions

Nitrones cycloaddition

Nitrones, cycloadditions

© 2024 chempedia.info