Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic metathesis

The developments of the metathesis reaction for polymer synthesis have paralleled the opportunities in acyclic chemistry. Acyclic and cyclic metathesis were discovered independently and only later were recognized as the same reaction. Most of the work in the area of ring-opening metathesis polymerization (ROMP) is outside the scope of this article, and only those areas where the results suggest possibilities in organic synthesis will be discussed in detail. [Pg.1120]

Another interesting transformation is the intramolecular metathesis reaction of 1,6-enynes. Depending on the substrates and catalytic species, very different products are formed by the intramolecular enyne metathesis reaction of l,6-enynes[41]. The cyclic 1,3-diene 71 is formed from a linear 1,6-enyne. The bridged tricyclic compound 73 with a bridgehead alkene can be prepared by the enyne metathesis of the cyclic enyne 72. The first step of... [Pg.480]

Cyclic Polyolefins (GPO) and Gycloolefin Copolymers (GOG). Japanese and European companies are developing amorphous cycHc polyolefins as substrate materials for optical data storage (213—217). The materials are based on dicyclopentadiene and/or tetracyclododecene (10), where R = H, alkyl, or COOCH. Products are formed by Ziegler-Natta polymerization with addition of ethylene or propylene (11) or so-called metathesis polymerization and hydrogenation (12), (101,216). These products may stiU contain about 10% of the dicycHc stmcture (216). [Pg.161]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

Metathesis of a cycloalkene initially yields a cyclic dimer, i.e. the size of the ring is doubled ... [Pg.134]

Mutual metathesis of a cyclic and an acyclic alkene provides still more possibilities in synthesizing organic compounds. For instance, cycloalkenes are cleaved by ethene into a,co-dienes. The reaction of 1,5-cyclooctadiene with ethene gives 1,5,9-decatriene (18) norbornene reacts with 2-butene to yield 1,3-dipropenylcyclopentane (30) ... [Pg.136]

Fig. 5. Mechanism of H risson and Chauvin for the mutual metathesis of a cyclic and an acyclic alkene. Fig. 5. Mechanism of H risson and Chauvin for the mutual metathesis of a cyclic and an acyclic alkene.
Crotonaldehyde, hydrogenation of, 43-48 Cubane, isomerization of, 148 Cyclic dienes, metathesis of, 135 Cyclic polyenes, metathesis of, 135 Cycloalkenes, metathesis of, 134-136 kinetic model, 164 ring-opening polymerization, 143 stereoselectivity, 158-160 transalkylation, 142-144 transalkylidenation, 142-144 Cyclobutane configuration, 147 geometry of, 145, 146 Cyclobutene, metathesis of, 135 1,5,9-Cyclododecatriene, metathesis of, 135... [Pg.416]

An alternative approach to cyclic enol ethers that avoids the metathesis of vinyl ethers has recently been developed by Snapper et al. [77a] and by Schmidt... [Pg.250]

C12-C13 would facilitate the ring closure, monocyclic diene 170 was chosen as the metathesis substrate. Indeed, exposure of 170 to catalyst A provided cycliza-tion product 171 in 94% yield within 6 h, without the aid of a cyclic conformational constraint. [Pg.301]

Blechert s synthesis of the piperidine alkaloid (-)-halosaline (387) by Ru-catalyzed RRM is outlined in Scheme 76 [160]. In the presence of 5 mol% of catalyst A, the ring rearrangement of metathesis precursor 385 proceeded cleanly with formation of both heterocyclic rings in 386. In situ deprotection of the cyclic silyl ether in 386, followed by selective reduction and removal of the to-syl group led to 387. [Pg.345]

Clark s group also reported on ring-closing enyne metathesis for the preparation of six- and seven-membered cyclic enol ethers 428 n= 1,2) as potential building blocks for the synthesis of marine polyether natural compounds such as brevetoxins and ciguatoxins. Metathesis products 428 were obtained from ene-ynes 427 in 72-98% yield when the NHC-bearing catalyst C was used (Scheme 84) [179]. [Pg.350]

Thus far, chemists have been able to influence the stereoselectivity of macro-cyclic RCM through steric and electronic substrate features or by the choice of a catalyst with appropriate activity, but there still exists a lack of prediction over the stereochemistry of macrocyclic RCM. One of the most important extensions of the original metathesis reaction for the synthesis of stereochemi-cally defined (cyclo)alkenes is alkyne metathesis, followed by selective partial hydrogenation. [Pg.359]

Monomers 24 and 25 behave differently when exposed to catalyst 14, shown in Fig. 8.15. Divinyltetramethyldisiloxane 24 is found to be metathesis inactive due to similar steric inhibitions experienced with divinyldimethylsilane. Monomer 25 is synthesized with one additional methylene spacer unit between the silicon atom and the olefin moiety, which then is reacted with Schrock s [Mo] catalyst. Here, metathesis occurs quite readily, exclusively forming a seven-membered cychc molecule (26) instead of polymer. The formation of the cyclic product can be explained by tire Tliorpe-Ingold effect.15... [Pg.452]

Diol-functionalized telechelic polymers have been desired for the synthesis of polyurethanes however, utilizing alcohol-functionalized a-olefins degrades both 14 and 23. Consequently, in order for alcohols to be useful in metathesis depolymerization, the functionality must be protected and the oxygen atom must not be /3 to the olefin or only cyclic species will be formed. Protection is accomplished using a/-butyldimcthylsiloxy group, and once protected, successful depolymerization to telechelics occurs readily. [Pg.457]

A nice application of this reaction for the synthesis of cyclic a-sulfanylphos-phonates 63 has been reported [42]. It involves a Rh(II)-catalyzed [2,3]-sigmatropic rearrangement and a ring-closing metathesis of the resulting a-(S-allyl) y,d-unsaturated phosphonates 62 (Scheme 16). However, the last step occurs with a low yield (19%) when R = H. [Pg.173]

The significant potential of the ruthenium complex 65 was further underlined in the catalytic asymmetric ring-opening/cross metathesis of the cyclic alkene 70 (Scheme 44). This transformation is catalyzed by 5% mol of 65 at room temperature, in air, and with undistilled and nondegassed THF to deliver the corresponding diene 71 in 96% ee and 66% isolated yield. In standard conditions (distilled and degassed THF), the alkene 70 reacts in 75 min to give the diene in 95% ee and 76% yield, with only 0.5 mol % of catalyst. [Pg.219]

In 2001, Furstner reported the preparation and characterisation of the NHC-Ru complex 22 containing iV,iV -bis[2,6-(diisopropyl)phenyl]imidazolidin-2-ylidene (SIPr) [29] (Fig. 3.6), which is the congener of complex 20. Subsequently, Mol and co-workers revealed that complex 22 was a highly active metathesis initiator [30]. More recent comparative studies showed that catalyst 22 could catalyse the RCM of 1 faster than any other NHC-Ru catalyst, while it was not stable enough to obtain complete conversion in the RCM of 3 and was inefficient for the construction of the tetrasubstituted double bond of cyclic olefin 6 [31]. [Pg.68]

ROMP is without doubt the most important incarnation of olefin metathesis in polymer chemistry [98]. Preconditions enabling this process involve a strained cyclic olefinic monomer and a suitable initiator. The driving force in ROMP is the release of ring strain, rendering the last step in the catalytic cycle irreversible (Scheme 3.6). The synthesis of well-defined polymers of complex architectures such as multi-functionaUsed block-copolymers is enabled by living polymerisation, one of the main benefits of ROMP [92, 98]. [Pg.82]

Catalysts with an unsymmetrical NHC ligand featuring a vinylic side chain have the unique ability to metathesise their own ligand to form a metaUacycle as shown in Scheme 3.7 [119], Ring opening metathesis will then incorporate the monomers, e.g. cyclooctene, into that cycle until a cyclic polymer is cleaved by another intramolecular metathesis step. The catalyst is recovered and can restart this endless route to cyclic polymers [121]. [Pg.87]

Scheme 3.7 REMP Intramolecular metathesis of pre-catalyst 75 to form catalyst 76 incorporation of monomers, release of a cyclic polymer and catalyst recovery... Scheme 3.7 REMP Intramolecular metathesis of pre-catalyst 75 to form catalyst 76 incorporation of monomers, release of a cyclic polymer and catalyst recovery...

See other pages where Cyclic metathesis is mentioned: [Pg.304]    [Pg.240]    [Pg.160]    [Pg.366]    [Pg.1144]    [Pg.9]    [Pg.304]    [Pg.240]    [Pg.160]    [Pg.366]    [Pg.1144]    [Pg.9]    [Pg.22]    [Pg.141]    [Pg.238]    [Pg.250]    [Pg.251]    [Pg.251]    [Pg.255]    [Pg.275]    [Pg.291]    [Pg.294]    [Pg.325]    [Pg.335]    [Pg.432]    [Pg.454]    [Pg.458]    [Pg.337]    [Pg.63]    [Pg.65]   
See also in sourсe #XX -- [ Pg.562 ]




SEARCH



© 2024 chempedia.info