Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic calculation

At this point in the calculation, we could call SEPR for unit SP3. However, since this calculation has no bearing on the convergence of the iterative cyclic calculations, we may as well hold off on it and do it only after the iterative procedure has converged. [Pg.531]

We will bypass the call of HEAT for the acid heater at this point, for the same reason we did not call SEPR for the final condenser. This calculation is not needed to complete the cycle, and so we need only do it after the cyclic calculation has converged. [Pg.531]

The second application of the CFTI approach described here involves calculations of the free energy differences between conformers of the linear form of the opioid pentapeptide DPDPE in aqueous solution [9, 10]. DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen, where D-Pen is the D isomer of /3,/3-dimethylcysteine) and other opioids are an interesting class of biologically active peptides which exhibit a strong correlation between conformation and affinity and selectivity for different receptors. The cyclic form of DPDPE contains a disulfide bond constraint, and is a highly specific S opioid [llj. Our simulations provide information on the cost of pre-organizing the linear peptide from its stable solution structure to a cyclic-like precursor for disulfide bond formation. Such... [Pg.164]

By analogy to additions of divalent carbon to the Cio aromatic framework, the molecule Cgi was expected to have the norcaradi-ene (II) or the cycloheptatriene (III) structure. Although an X-ray structure was not available, the UV-visible spectrum, NMR spectrum, and cyclic voltammetry supported the cycloheptatriene (III) structure. The researchers then calculated the relative molecular mechanics energies of II and III and found the cycloheptatriene structure stabilized by 31 kcal/mol with respect to the norcaradi-ene structure. Although the calculations do not confirm the structures, they provide additional supporting evidence. [Pg.54]

Molecular orbital calculations predict that oxirane forms the cyclic conjugate acid (39), which is 30 kJ moF stabler than the open carbocation (40) and must surmount a barrier of 105kJmoF to isomerize to (40) (78MI50500). The proton affinity of oxirane was calculated (78JA1398) to be 807 kJ mol (cf. the experimental values of 773 kJ moF for oxirane and 777-823 kJ moF for dimethyl ether (80MI50503)). The basicity of cyclic ethers is discussed in (B-67MI50504). [Pg.105]

Whereas oxaziridine and diaziridine were partial subjects of comprehensive theoretical studies on cyclic compounds (73MI50800), diazirine and some of its simple derivatives were the special target of quantum chemical investigations. Since diazirine, the lowest molecular weight heterocycle, has only five atoms and is of high symmetry, there was a chance for ab initio calculations, which followed some semiempirical studies. [Pg.197]

To avoid operating difficulties, the torsional critical frequencies of the combined engine and driven equipment should be calculated or measured to assure that operating speeds are removed from these criticals or that vibration dampers are provided or that the equipment is designed for the resulting cyclic stresses. [Pg.2494]

To calculate the relative binding constants of the two ligands, Ligandl and Ligand2, we construct the following cyclic scheme. [Pg.362]

Thermal Gradients may be measured or calculated by means of heat flow formulas, etc. After they are established it is likely to be found from the formula that for most cyclic heating conditions the tolerable temperature gradient is exceeded. This means that some plastic flow will result (for a ductile alloy) or that fracture will occur. Fortunately, most engineering alloys have some ductility. However, if the cycles are repeated and flow occurs on each cycle, the ductility can become exhausted and cracking will then result. At this point it should be recognized that conventional room temperature tensile properties may have little or no relation to the properties that control behavior at the higher temperatures. [Pg.268]

Molecular orbital calculations indicate that cyclo C-18 carbyne should be relatively stable and experimental evidence for cyclocarbynes has been found [25], Fig. 3B. Diederich et al [25] synthesised a precursor of cyclo C-18 and showed by laser flash heating and time-of flight mass spectrometry that a series of retro Diels-Alder reactions occurred leading to cyclo C-18 as the predominant fragmentation pattern. Diederich has also presented a fascinating review of possible cyclic all-carbon molecules and other carbon-rich nanometre-sized carbon networks that may be susceptible to synthesis using organic chemical techniques [26]. [Pg.8]

Table I.IS gives total bonding energies in kilocalories per mole for some simple molecules. The B3iyP results are comparable in accuracy to G1 and G2 results. Another comparison was done with a series of cyclic hydrocarbons as the test case. The calculations were done using an isodesmic reaction scheme. The results are given in Table 1.19. Density functional calculations have also been successfully extended to functionalized molecules. ... Table I.IS gives total bonding energies in kilocalories per mole for some simple molecules. The B3iyP results are comparable in accuracy to G1 and G2 results. Another comparison was done with a series of cyclic hydrocarbons as the test case. The calculations were done using an isodesmic reaction scheme. The results are given in Table 1.19. Density functional calculations have also been successfully extended to functionalized molecules. ...
Aromaticity is usually described in MO terminology. Cyclic structures that have a particularly stable arrangement of occupied 7t molecular orbitals are called aromatic. A simple expression of the relationship between an MO description of stmcture and aromaticity is known as the Hiickel rule. It is derived from Huckel molecular orbital (HMO) theory and states that planar monocyclic completely conjugated hydrocarbons will be aromatic when the ring contains 4n + 2 n electrons. HMO calculations assign the n-orbital energies of the cyclic unsaturated systems of ring size 3-9 as shown in Fig. 9.1. (See Chapter 1, Section 1.4, p. 31, to review HMO theory.)... [Pg.509]

Both thermochemical and MO approaches agree that benzene is an especially stable molecule and are reasonably consistent with one another in the stabilization energy which is assigned. It is very significant that MO calculations also show a destabilization of certain conjugated cyclic polyenes, cyclobutadiene in particular. The instability of cyclobutadiene has precluded any thermochemical evaluation of the extent of destabilization. Compounds that are destabilized relative to conjugated noncydic polyene models are called antiaro-maticf ... [Pg.512]

In this paper, we review progress in the experimental detection and theoretical modeling of the normal modes of vibration of carbon nanotubes. Insofar as the theoretical calculations are concerned, a carbon nanotube is assumed to be an infinitely long cylinder with a mono-layer of hexagonally ordered carbon atoms in the tube wall. A carbon nanotube is, therefore, a one-dimensional system in which the cyclic boundary condition around the tube wall, as well as the periodic structure along the tube axis, determine the degeneracies and symmetry classes of the one-dimensional vibrational branches [1-3] and the electronic energy bands[4-12]. [Pg.129]

In cases where information about atomic arrangements cannot be obtained by X-ray crystallography owing to the insolubility or instability of a compound, vibrational spectroscopy may provide valuable insights. For example, the explosive and insoluble black solid SesNaCla was shown to contain the five-membered cyclic cation [SesNaCl]" by comparing the calculated fundamental vibrations with the experimental IR spectrum. ... [Pg.47]

Unlike reactive diatomic chalcogen-nitrogen species NE (E = S, Se) (Section 5.2.1), the prototypical chalcogenonitrosyls HNE (E = S, Se) have not been characterized spectroscopically, although HNS has been trapped as a bridging ligand in the complex (HNS)Fc2(CO)6 (Section 7.4). Ab initio molecular orbital calculations at the self-consistent field level, with inclusion of electron correlation, reveal that HNS is ca. 23 kcal mof more stable than the isomer NSH. There is no low-lying barrier that would allow thermal isomerization of HNS to occur in preference to dissociation into H -1- NS. The most common form of HNS is the cyclic tetramer (HNS)4 (Section 6.2.1). [Pg.181]


See other pages where Cyclic calculation is mentioned: [Pg.232]    [Pg.232]    [Pg.189]    [Pg.273]    [Pg.232]    [Pg.232]    [Pg.189]    [Pg.273]    [Pg.169]    [Pg.54]    [Pg.508]    [Pg.147]    [Pg.122]    [Pg.547]    [Pg.280]    [Pg.6]    [Pg.48]    [Pg.135]    [Pg.145]    [Pg.774]    [Pg.299]    [Pg.824]    [Pg.297]    [Pg.31]    [Pg.33]    [Pg.616]    [Pg.122]    [Pg.9]    [Pg.38]    [Pg.83]    [Pg.141]    [Pg.33]    [Pg.150]    [Pg.173]    [Pg.174]    [Pg.175]    [Pg.181]    [Pg.265]    [Pg.265]   
See also in sourсe #XX -- [ Pg.232 ]

See also in sourсe #XX -- [ Pg.234 ]




SEARCH



Cyclic ethers theoretical calculations

© 2024 chempedia.info