Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystals line defects

As in crystals, defects in liquid crystals can be classified as point, line or wall defects. Dislocations are a feature of liquid crystal phases where tliere is translational order, since tliese are line defects in tliis lattice order. Unlike crystals, tliere is a type of line defect unique to liquid crystals tenned disclination [39]. A disclination is a discontinuity of orientation of tire director field. [Pg.2551]

The other major defects in solids occupy much more volume in the lattice of a crystal and are refeiTed to as line defects. There are two types of line defects, the edge and screw defects which are also known as dislocations. These play an important part, primarily, in the plastic non-Hookeian extension of metals under a tensile stress. This process causes the translation of dislocations in the direction of the plastic extension. Dislocations become mobile in solids at elevated temperamres due to the diffusive place exchange of atoms with vacancies at the core, a process described as dislocation climb. The direction of climb is such that the vacancies move along any stress gradient, such as that around an inclusion of oxide in a metal, or when a metal is placed under compression. [Pg.33]

The simplest type of line defect is the edge dislocation, which consists of an extra half plane of atoms in the crystal, as illustrated schematically in Fig. 20.30a edge dislocations are often denoted by 1 if the extra half plane ab is above the plane sp, or by T if it is below. [Pg.1263]

To a good approximation, only atoms within the dotted circles in Figs. 20.30a and b are displaced from their equilibrium position in a real, three-dimensional crystal the diameter d of these circles would be very much less than the length / of the dislocation, i.e. the length, perpendicular to the page, of the extra half plane of atoms ab in Fig. 20.30a, or of the line cd in Fig. 20.306. Dislocations strictly, therefore, are cylindrical defects of diameter d and length / however, since I d they are referred to as line defects. [Pg.1263]

It should be clear that the presence of line defects in a crystal lattice leads to a disruption of the continuity of the lattice just as the presence of point defects affects the packing of a given lattice. The line defect. [Pg.84]

The volume defect is somewhat more difficult to visualize in two dimensions. Let us suppose that a line defect has appeared while the crystal structure was forming. This would be a situation similar to that already shown in 3.1.3. where aline defect was shown. The compression-tension area of the defect has a definitive effect upon the growing crystal and causes it to deform around the line defect. This is shown in the following diagram ... [Pg.85]

This type of volume defect in the crystal is known as a "screw dislocation", so-called because of its topography. Note that the spiral dislocation of the growing lattice deposits around the Une defect at right angles to the line defect. [Pg.86]

Grain boundaries form junctions between grains within the particle, due to vacancy and line-defect formation. This situation arises because of the 2nd Law of Thermodjmamics (Entropy). Thus, if crystallites are formed by precipitation from solution, the product will be a powder consisting of many small particles. Their actual size will depend upon the methods used to form them. Note that each crystallite can be a single-crystal but, of necessity, will be limited in size. [Pg.252]

This equation arises because both of these extrinsic defects affect the energy of the crystal. We can also have grain boundaries which may be clustering of line defects or mosaic blocks. The latter may be regarded as very large grains in a crystallite. [Pg.300]

Dislocations Dislocations are stoichiometric line defects. A dislocation marks the boundary between the slipped and unslipped parts of crystal. The simplest type of dislocation is an edge dislocation, involving an extra layer of atoms in a crystal (Fig. 25.2). The atoms in the layers above and below the half-plane distort beyond its edge and are no longer planar. The direction of the edge of the half-plane into the crystal is know as the line of dislocation. Another form of dislocation, known as a screw dislocation, occurs when an extra step is formed at the surface of a crystal, causing a mismatch that extends spirally through the crystal. [Pg.421]

Thermodynamic considerations imply that all crystals must contain a certain number of defects at nonzero temperatures (0 K). Defects are important because they are much more abundant at surfaces than in bulk, and in oxides they are usually responsible for many of the catalytic and chemical properties.15 Bulk defects may be classified either as point defects or as extended defects such as line defects and planar defects. Examples of point defects in crystals are Frenkel (vacancy plus interstitial of the same type) and Schottky (balancing pairs of vacancies) types of defects. On oxide surfaces, the point defects can be cation or anion vacancies or adatoms. Measurements of the electronic structure of a variety of oxide surfaces have shown that the predominant type of defect formed when samples are heated are oxygen vacancies.16 Hence, most of the surface models of... [Pg.46]

Center of a point or line defect from which black brushes originate when a liquid crystal is observed between crossed polarizers. [Pg.121]

Dislocations are line defects. They bound slipped areas in a crystal and their motion produces plastic deformation. They are characterized by two geometrical parameters 1) the elementary slip displacement vector b (Burgers vector) and 2) the unit vector that defines the direction of the dislocation line at some point in the crystal, s. Figures 3-1 and 3-2 show the two limiting cases of a dislocation. If b is perpendicular to s, the dislocation is named an edge dislocation. The screw dislocation has b parallel to v. Often one Finds mixed dislocations. Dislocation lines close upon themselves or they end at inner or outer surfaces of a solid. [Pg.43]

In contrast to fluids, crystals have a greater number of control parameters crystal structure, strain and stress, grain boundaries, line defects (dislocations), and the size and shape of crystallites, etc. These are all relevant to kinetics. Treatments that go beyond transport and diffusion in this important field of physical chemistry are scarce. [Pg.436]

Figure 12.1 Various point and line defects on a vicinal crystal/vapor surface. 1 See Appendix B for further discussion of the structure of surfaces. Figure 12.1 Various point and line defects on a vicinal crystal/vapor surface. 1 See Appendix B for further discussion of the structure of surfaces.
Crystal/crystal interfaces possess more degrees of freedom than vapor/crystal or liquid/crystal interfaces. They may also contain line defects in the form of interfacial dislocations, dislocation-ledges, and pure ledges. Therefore, the structures and motions of crystal/crystal interfaces are potentially more complex than those of vapor/crystal and liquid/crystal interfaces. Crystal/crystal interfaces experience many different types of pressures and move by a wide variety of atomic mechanisms, ranging from rapid glissile motion to slower thermally activated motion. An overview of crystal/crystal interface structure is given in Appendix B. [Pg.303]

B.7 CLASSIFICATION OF LINE DEFECTS IN CRYSTAL/CRYSTAL INTERFACES... [Pg.599]

The line defects that can exist in crystal/crystal interfaces can be classified as pure dislocations, dislocation/ledges (i.e., line defects with both dislocation and ledge character), and pure ledges. Examples of pure dislocations are shown in Figs. B.4c and B.7c. In these cases, there is no ledge in the boundary at the dislocation. An example of a dislocation/ledge is shown in Fig. B.66, and a pure ledge without any dislocation content is shown in Fig. B.9. [Pg.599]


See other pages where Crystals line defects is mentioned: [Pg.115]    [Pg.115]    [Pg.144]    [Pg.346]    [Pg.120]    [Pg.105]    [Pg.105]    [Pg.110]    [Pg.481]    [Pg.84]    [Pg.85]    [Pg.86]    [Pg.119]    [Pg.514]    [Pg.96]    [Pg.230]    [Pg.21]    [Pg.85]    [Pg.50]    [Pg.35]    [Pg.78]    [Pg.505]    [Pg.98]    [Pg.312]    [Pg.318]    [Pg.319]    [Pg.594]    [Pg.596]    [Pg.599]    [Pg.600]   
See also in sourсe #XX -- [ Pg.315 , Pg.350 ]




SEARCH



Crystal defects

Crystallization line

© 2024 chempedia.info