Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystalline polymers temperature

The relation of abrasion to friction appears from Figure 7.31, in which the abrasion is given as a function of temperature for some crystalline polymers. Temperature increase causes, from a certain temperature, a drastic increase in abrasion due to sticking together of the surfaces. [Pg.142]

No polymer is ever 100% crystalline at best, patches of crystallinity are present in an otherwise amorphous matrix. In some ways, the presence of these domains of crystallinity is equivalent to cross-links, since different chains loop in and out of the same crystal. Although there are similarities in the mechanical behavior of chemically cross-linked and partially crystalline polymers, a significant difference is that the former are irreversibly bonded while the latter are reversible through changes of temperature. Materials in which chemical cross-linking is responsible for the mechanical properties are called thermosetting those in which this kind of physical cross-linking operates, thermoplastic. [Pg.26]

Second, in the early 1950s, Hogan and Bank at Phillips Petroleum Company, discovered (3,4) that ethylene could be catalyticaHy polymerized into a sohd plastic under more moderate conditions at a pressure of 3—4 MPa (435—580 psi) and temperature of 70—100°C, with a catalyst containing chromium oxide supported on siUca (Phillips catalysts). PE resins prepared with these catalysts are linear, highly crystalline polymers of a much higher density of 0.960—0.970 g/cnr (as opposed to 0.920—0.930 g/cnf for LDPE). These resins, or HDPE, are currentiy produced on a large scale, (see Olefin polymers, HIGH DENSITY POLYETHYLENE). [Pg.367]

Master curves can also be constmcted for crystalline polymers, but the shift factor is usually not the same as the one calculated from the WLF equation. An additional vertical shift factor is usually required. This factor is a function of temperature, partly because the modulus changes as the degree of crystaHiuity changes with temperature. Because crystaHiuity is dependent on aging and thermal history, vertical factors and crystalline polymer master curves tend to have poor reproducibiUty. [Pg.202]

As-polymerized PVDC is not in its most stable state annealing and recrystaUization can raise the temperature at which it dissolves (78). Low crystallinity polymers dissolve at a lower temperature, forming metastable solutions. However, on standing at the dissolving temperature, they gel or become turbid, indicating recrystaUization into a more stable form. [Pg.433]

Polymerization. Chloroprene is normally polymerized with free-radical catalysts in aqueous emulsion, limiting the conversion of monomer to avoid formation of cross-linked insoluble polymer. At a typical temperature of 40°C, the polymer is largely head-to-taH in orientation and trans in configuration, but modest amounts of head-to-head, cis, 1,2, and 3,4 addition units can also be detected. A much more regular and highly crystalline polymer can be made at low temperature (11). Chloroprene can also be polymerized with cationic polymerization catalysts, giving a polymer with... [Pg.37]

Figure 3.1. Temperature-molecular weight diagrams for (a) amorphous and (b) moderately crystalline polymers (with highly crystalline polymers the glass transition is less apparent)... Figure 3.1. Temperature-molecular weight diagrams for (a) amorphous and (b) moderately crystalline polymers (with highly crystalline polymers the glass transition is less apparent)...
In the case of a crystalline polymer the maximum service temperature will be largely dependent on the crystalline melting point. When the polymer possesses a low degree of crystallinity the glass transition temperature will remain of paramount importance. This is the case with unplasticised PVC and the polycarbonate of bis-phenol A. [Pg.73]

Polymer compounds vary considerably in the amount of heat required to bring them up to processing temperatures. These differences arise not so much as a result of differing processing temperatures but because of different specific heats. Crystalline polymers additionally have a latent heat of fusion of the crystalline structure which has to be taken into account. [Pg.161]

In principle the heat required to bring the material up to its processing temperature may be calculated in the case of amorphous polymers by multiplying the mass of the material (IP) by the specific heat s) and the difference between the required melt temperature and ambient temperature (AT). In the case of crystalline polymers it is also necessary to add the product of mass times latent heat of melting of crystalline structures (L). Thus if the density of the material is D then the enthalpy or heat required ( ) to raise volume V to its processing temperature will be given by ... [Pg.161]

After-shrinkage is an additional problem with crystalline polymers and depends on the position of the ambient temperature relative to Tg and T. This was discussed in Chapter 3. [Pg.176]

Some interesting differences are noted between amorphous and crystalline polymers when glass fibre reinforcement is incorporated into the polymer. In Figure 9.2 (ref. 10) it will be seen that incorporation of glass fibre has a minimal effect on the heat deflection temperature of amorphous polymers (polystyrene,... [Pg.189]

Figure 9.2. Heal deflection temperatures under a load of 1.82 MPa for selected polymers. Note that incorporation of glass fibre has a much greater effect with crystalline polymers than with amorphous ones (after Whelan and Craft courtesy of British Plastics and Rubber)... Figure 9.2. Heal deflection temperatures under a load of 1.82 MPa for selected polymers. Note that incorporation of glass fibre has a much greater effect with crystalline polymers than with amorphous ones (after Whelan and Craft courtesy of British Plastics and Rubber)...
ABS, polycarbonate and polysulphone) but large effects on crystalline polymers. It is particularly interesting, as well as being technically important, that for many crystalline polymers the unfilled polymer has a heat deflection temperature (at 1.82MPa stress) similar to the Tg, whereas the filled polymers have values close to the T (Table 9.2). [Pg.189]

By the use of a moderately crystalline polymer with a Tg well below the expected service temperature (e.g. polyethylene). [Pg.190]

In the crystalline region isotactic polystyrene molecules take a helical form with three monomer residues per turn and an identity period of 6.65 A. One hundred percent crystalline polymer has a density of 1.12 compared with 1.05 for amorphous polymer and is also translucent. The melting point of the polymer is as high as 230°C. Below the glass transition temperature of 97°C the polymer is rather brittle. [Pg.454]

As is commonly the case with crystalline polymers the glass transition temperature is of only secondary significance with the aliphatic polyamide homopolymers. There is even considerable uncertainty as to the numerical values. Rigorously dried polymers appear to have TgS of about 50°C, these figures dropping towards 0°C as water is absorbed. At room temperature nylon 66 containing the usual amounts of absorbed water appears to be slightly above the T ... [Pg.489]

As with other crystalline polymers, the incorporation of glass fibres narrows the gap between the heat deflection temperatures and the crystalline melting point. [Pg.498]

As with the aliphatic polyamides, the heat deflection temperature (under 1.82 MPa load) of about 96°C is similar to the figure for the Tg. As a result there is little demand for unfilled polymer, and commercial polymers are normally filled. The inclusion of 30-50% glass fibre brings the heat deflection temperature under load into the range 217-231°C, which is very close to the crystalline melting point. This is in accord with the common observation that with many crystalline polymers the deflection temperature (1.82 MPa load) of unfilled material is close to the Tg and that of glass-filled material is close to the T. ... [Pg.513]

As is typical for crystalline polymers incapable of specific interactions with liquids, there are no solvents at room temperature but liquids which have a similar solubility parameter (8 = 22.4 MPa ) will cause a measure of swelling, principally in the amorphous region. ... [Pg.537]


See other pages where Crystalline polymers temperature is mentioned: [Pg.137]    [Pg.137]    [Pg.433]    [Pg.439]    [Pg.348]    [Pg.387]    [Pg.405]    [Pg.151]    [Pg.299]    [Pg.368]    [Pg.438]    [Pg.35]    [Pg.233]    [Pg.547]    [Pg.261]    [Pg.261]    [Pg.274]    [Pg.194]    [Pg.43]    [Pg.44]    [Pg.44]    [Pg.47]    [Pg.50]    [Pg.51]    [Pg.52]    [Pg.70]    [Pg.84]    [Pg.179]    [Pg.212]    [Pg.319]    [Pg.516]    [Pg.594]   
See also in sourсe #XX -- [ Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 ]




SEARCH



Crystalline polymer, intermediate temperature

Crystalline polymers glass transition temperature

Crystalline polymers melting temperature

Crystalline polymers temperature dependence

Crystalline temperature

Glass transition temperatures, poly -liquid-crystalline polymer

Polymer temperature

Polymers, liquid crystalline glass transition temperature

Polymers, liquid crystalline isotropization temperature

Temperature Dependence for Semi-Crystalline Polymers

Temperature crystallinity

Temperature dependence main chain crystalline polymers

© 2024 chempedia.info