Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal crystalline phase

Hydrated metal sulphates have long been used to study water removal processes, and characteristic kinetic behaviour is conveniently illustrated by reference to these substances. Frost and co-workers [602,603] have investigated the structures, stabilities and adsorption properties of various intermediate amorphous phases, the immediate reaction products which can later undergo reorganization to yield crystalline phase. [Pg.131]

Hydrothermal hydrolysis of metal ions is useful in producing crystalline phases which contain metals in a state of partial hydrolysis, i.e., a state intermediate between that of the hydrated metal ion and that of the hydrous hydroxide. Such reactions have been used to produce numerous crystalline phases of actinides (1-4), Group IV metal ions (5-14) and lanthanides (15-21). [Pg.54]

The only crystalline phase which has been isolated has the formula Pu2(OH)2(SO )3(HaO). The appearance of this phase is quite remarkable because under similar conditions the other actinides which have been examined form phases of different composition (M(OH)2SOit, M=Th,U,Np). Thus, plutonium apparently lies at that point in the actinide series where the actinide contraction influences the chemistry such that elements in identical oxidation states will behave differently. The chemistry of plutonium in this system resembles that of zirconium and hafnium more than that of the lighter tetravalent actinides. Structural studies do reveal a common feature among the various hydroxysulfate compounds, however, i.e., the existence of double hydroxide bridges between metal atoms. This structural feature persists from zirconium through plutonium for compounds of stoichiometry M(OH)2SOit to M2 (OH) 2 (S0O 3 (H20) i,. Spectroscopic studies show similarities between Pu2 (OH) 2 (SOO 3 (H20) i, and the Pu(IV) polymer and suggest that common structural features may be present. [Pg.67]

Alloys are metallic materials prepared by mixing two or more molten metals. They are used for many purposes, such as construction, and are central to the transportation and electronics industries. Some common alloys are listed in Table 5.5. In homogeneous alloys, atoms of the different elements are distributed uniformly. Examples include brass, bronze, and the coinage alloys. Heterogeneous alloys, such as tin-lead solder and the mercury amalgam sometimes used to fill teeth, consist of a mixture of crystalline phases with different compositions. [Pg.324]

The properties of alloys are affected by their composition and structure. Not only is the crystalline structure important, but the size and texture of the individual grains also contribute to the properties of an alloy. Some metal alloys are one-phase homogeneous solutions. Examples are brass, bronze, and the gold coinage alloys. Other alloys are heterogeneous mixtures of different crystalline phases, such as tin-lead solder and the mercury-silver amalgams used to fill teeth. [Pg.811]

Two types of reactions producing a new phase can be distinguished (1) those producing a noncrystalline phase (gas bubbles liquid drops as, e.g., in the electrolytic deposition of mercury on substrates not forming amalgams), and (2) those producing a crystalline phase (cathodic metal deposition, anodic deposition of oxides or salts having low solubility). [Pg.253]

Crystalline phases (truncated octahedra) of 5 nm silver particles, thiolate protected as well, have been detected by means of high-resolution transmission electron microscopy (HRTEM) [26-28]. Three-dimensional architectures of 5-6 nm thiolate-stabilized gold particles have also been described [29]. Several other reports on 3D superlattices of metal nanoparticles have become known during the last few years [30-33]. [Pg.11]

Transition metal oxides, rare earth oxides and various metal complexes deposited on their surface are typical phases of DeNO catalysts that lead to redox properties. For each of these phases, complementary tools exist for a proper characterization of the metal coordination number, oxidation state or nuclearity. Among all the techniques such as EPR [80], UV-vis [81] and IR, Raman, transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS) and NMR, recently reviewed [82] for their application in the study of supported molecular metal complexes, Raman and IR spectroscopies are the only ones we will focus on. The major advantages offered by these spectroscopic techniques are that (1) they can detect XRD inactive amorphous surface metal oxide phases as well as crystalline nanophases and (2) they are able to collect information under various environmental conditions [83], We will describe their contributions to the study of both the support (oxide) and the deposited phase (metal complex). [Pg.112]

Carbenes form stable complexes with many metals in the periodic table of the elements, and gold is no exception. In fact, the chemistry of this class of organogold compounds for some time has been one of the fastest growing subdisciplines. While the corresponding chapters were still short in previous accounts,1 2 the inventory for this review is now particularly rich and diverse.230 As for other classes of carbene complexes, this upsurge is based on expectations for potential applications in various fields such as NLO materials, liquid crystalline phases, and catalysis. Where applicable, this is indicated for each of the entries in this chapter. [Pg.285]

Nano-electrode arrays can be formed through nano-structuring of the electrocatalyst on an inert electrode support. Indeed, if the current of the analyte reduction (oxidation) on a blank electrode is negligible compared to the activity of the electrocatalyst, the former can be considered as an insulator surface. Hence, for the synthesis of nanoelectrode arrays one has to carry out material nano-structuring. Recently, an elegant approach [140] for the electrosynthesis of mesoporous nano-structured surfaces by depositioning different metals (Pt, Pd, Co, Sn) through lyotropic liquid crystalline phases has been proposed [141-143],... [Pg.446]

Fig. 10 Electrochemical energy level model for orbital mediated tunneling. Ap and Ac are the gas-and crystalline-phase electron affinities, 1/2(SCE) is the electrochemical potential referenced to the saturated calomel electrode, and provides the solution-phase electron affinity. Ev, is the Fermi level of the substrate (Au here). The corresponding positions in the OMT spectrum are shown by Ar and A0 and correspond to the electron affinity and ionization potential of the adsorbate film modified by interaction with the supporting metal, At. The spectrum is that of nickel(II) tetraphenyl-porphyrin on Au (111). (Reprinted with permission from [26])... Fig. 10 Electrochemical energy level model for orbital mediated tunneling. Ap and Ac are the gas-and crystalline-phase electron affinities, 1/2(SCE) is the electrochemical potential referenced to the saturated calomel electrode, and provides the solution-phase electron affinity. Ev, is the Fermi level of the substrate (Au here). The corresponding positions in the OMT spectrum are shown by Ar and A0 and correspond to the electron affinity and ionization potential of the adsorbate film modified by interaction with the supporting metal, At. The spectrum is that of nickel(II) tetraphenyl-porphyrin on Au (111). (Reprinted with permission from [26])...
In the specific case of biomass gasification, several alkaline salts and heavy metals and metal oxides particles may act as additional poisons by enhancing the sintering of the Ni crystallites or by being adsorbed on the Ni sites [44]. While acid supports such as alumina react with alkali to form crystalline phases, basic supports (like MgO) do not react directly with them however, alkali causes coverage of the surface and plugging of the pores. [Pg.159]


See other pages where Metal crystalline phase is mentioned: [Pg.314]    [Pg.319]    [Pg.322]    [Pg.337]    [Pg.338]    [Pg.152]    [Pg.433]    [Pg.298]    [Pg.44]    [Pg.44]    [Pg.328]    [Pg.264]    [Pg.642]    [Pg.348]    [Pg.940]    [Pg.167]    [Pg.167]    [Pg.99]    [Pg.285]    [Pg.327]    [Pg.418]    [Pg.31]    [Pg.12]    [Pg.298]    [Pg.111]    [Pg.311]    [Pg.18]    [Pg.18]    [Pg.161]    [Pg.295]    [Pg.296]    [Pg.65]    [Pg.65]    [Pg.298]    [Pg.213]    [Pg.128]    [Pg.128]    [Pg.2]   


SEARCH



Crystalline phases

Metal crystalline

Metal crystallinity

Metal phases

Metallic phase

© 2024 chempedia.info