Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc blende, crystal structure

Crystal structure zinc blende diamond hexagonal hexagonal... [Pg.421]

Fig. 1.2 Crystal structures of the major sulfides (metal atoms are shown as smaller or black spheres) (A) galena (PbS) structure (rock salt) (B) sphalerite (ZnS) structure (zinc blende) (C) wurtzite (ZnS) strucmre (D) pyrite structure and the linkage of metal-sulfur octahedra along the c-axis direction in (/) pyrite (FeSa) and (//) marcasite (FeSa) (E) niccolite (NiAs) structure (F) coveUite (CuS) structure (layered). (Adapted from Vaughan DJ (2005) Sulphides. In Selley RC, Robin L, Cocks M, Plimer IR (eds.) Encyclopedia of Geology, MINERALS, Elsevier p 574 (doi 10.1016/B0-12-369396-9/00276-8))... Fig. 1.2 Crystal structures of the major sulfides (metal atoms are shown as smaller or black spheres) (A) galena (PbS) structure (rock salt) (B) sphalerite (ZnS) structure (zinc blende) (C) wurtzite (ZnS) strucmre (D) pyrite structure and the linkage of metal-sulfur octahedra along the c-axis direction in (/) pyrite (FeSa) and (//) marcasite (FeSa) (E) niccolite (NiAs) structure (F) coveUite (CuS) structure (layered). (Adapted from Vaughan DJ (2005) Sulphides. In Selley RC, Robin L, Cocks M, Plimer IR (eds.) Encyclopedia of Geology, MINERALS, Elsevier p 574 (doi 10.1016/B0-12-369396-9/00276-8))...
Class (ii) structures with close-packed S. In these structures metal atoms occupy tetrahedral and/or octahedral holes in a c.p. assembly of S atoms. With the exception of one form of AI2S3 which crystallizes with the corundum structure these are not typically M2X3 structures but are defect structures, that is, MX structures (zinc-blende, wurtzite NiAs, or NaCl) from which one-third of the M atoms are missing. In some structures the arrangement of the vacancies is random and in others regular. [Pg.617]

Crystal structure Zinc Zinc Wurtzite Wurtzite Wurtzite Wurtzite Diamond Wurtzite Zinc blende... [Pg.3231]

Dark gray Or dark yellow crystals. Cubic zinc blende structure. Must be protected from moist atr since it reacts readily to produce phosphine which is highly toxic, djs 2.85 (Montignie) d 2.40 (Wang et al). Does not melt Or decom-pose thermally at temps up to 1000°, Treatment with water and acid produces phosphine in quantitative yields. [Pg.59]

Diamond is an important commodity as a gemstone and as an industrial material and there are several excellent monographs on the science and technology of this material [3-5]. Diamond is most frequently found in a cubic form in which each carbon atom is linked to fom other carbon atoms by sp ct bonds in a strain-free tetrahedral array. Fig. 2A. The crystal stmcture is zinc blende type and the C-C bond length is 154 pm. Diamond also exists in an hexagonal form (Lonsdaleite) with a wurtzite crystal structure and a C-C bond length of 152 pm. The crystal density of both types of diamond is 3.52 g-cm. ... [Pg.4]

The predominantly ionic alkali metal sulfides M2S (Li, Na, K, Rb, Cs) adopt the antifluorite structure (p. 118) in which each S atom is surrounded by a cube of 8 M and each M by a tetrahedron of S. The alkaline earth sulfides MS (Mg, Ca, Sr, Ba) adopt the NaCl-type 6 6 structure (p. 242) as do many other monosulfides of rather less basic metals (M = Pb, Mn, La, Ce, Pr, Nd, Sm, Eu, Tb, Ho, Th, U, Pu). However, many metals in the later transition element groups show substantial trends to increasing covalency leading either to lower coordination numbers or to layer-lattice structures. Thus MS (Be, Zn, Cd, Hg) adopt the 4 4 zinc blende structure (p. 1210) and ZnS, CdS and MnS also crystallize in the 4 4 wurtzite modification (p. 1210). In both of these structures both M and S are tetrahedrally coordinated, whereas PtS, which also has 4 4... [Pg.679]

Figure 29.1 Crystal structures of ZnS. (a) Zinc blende, consisting of two, interpenetrating, cep lattices of Zn and S atoms displaced with respect to each other so that the atoms of each achieve 4-coordination (Zn-S = 235 pm) by occupying tetrahedral sites of the other lattice. The face-centred cube, characteristic of the cep lattice, can be seen — in this case composed of S atoms, but an extended diagram would reveal the same arrangement of Zn atoms. Note that if all the atoms of this structure were C, the structure would be that of diamond (p. 275). (b) Wurtzite. As with zinc blende, tetrahedral coordination of both Zn and S is achieved (Zn-S = 236 pm) but this time the interpenetrating lattices are hexagonal, rather than cubic, close-packed. Figure 29.1 Crystal structures of ZnS. (a) Zinc blende, consisting of two, interpenetrating, cep lattices of Zn and S atoms displaced with respect to each other so that the atoms of each achieve 4-coordination (Zn-S = 235 pm) by occupying tetrahedral sites of the other lattice. The face-centred cube, characteristic of the cep lattice, can be seen — in this case composed of S atoms, but an extended diagram would reveal the same arrangement of Zn atoms. Note that if all the atoms of this structure were C, the structure would be that of diamond (p. 275). (b) Wurtzite. As with zinc blende, tetrahedral coordination of both Zn and S is achieved (Zn-S = 236 pm) but this time the interpenetrating lattices are hexagonal, rather than cubic, close-packed.
Ziegler-Natta catalyst A stereospecific catalyst for polymerization reactions, consisting of titanium tetrachloride and triethylaluminum. zinc-blende structure A crystal structure in which the cations occupy half the tetrahedral holes in a nearly close packed cubic lattice of anions also known as sphalerite structure. [Pg.971]

The monosulfides of the alkaline earth metals crystallize in the rock salt (MgS, CaS, SrS, BaS) and zinc blende (BeS) structures. BaS is insoluble in water, while the other monosulfides are sparingly soluble but hydrolyzed on warming (except MgS that is completely hydrolyzed). The monoselenides are isomorphous to the sulfides. The monotellurides CaTe, SrTe, BaTe adopt the rock salt stmcture, while BeTe has the zinc blende and MgTe the wurtzite structure. Alkaline earth polysulfides may be prepared by boiling a solution or suspension of the metal hydroxide with sulfur, e.g.,... [Pg.29]

All the 12 monochalcogenides of the IIB metals crystallize in the tetrahedral zinc blende (ZB) or wurtzite (W) structures, as shown in the table below, with the exception of HgS that exists also in a distorted rock salt (RS) form. [Pg.45]

A similar one-step process was employed successfully [66] to prepare well-crystallized CdS thin films of optical quality on Au(lll) from an aqueous solution of CdSOa, EDTA, and Na2S at room temperature. A phase transition from cubic (zinc blende) to hexagonal (wurtzite) CdS structure was observed with decreasing pH below 5, while highly preferential orientation along [11.0] directions for the... [Pg.168]

Furthermore, crystals whose structures are not centrosymmetric have different hardnesses on opposite sides of a given crystal even though the Miller indices of the surface planes are the same. For example, the hardness of the (0001) plane of ZnS (zinc blende structure) is not the same as that of the (000-1) plane. [Pg.25]

In theory, the III-V compound semiconductors and their alloys are made from a one to one proportion of elements of the III and V columns of the periodic table. Most of them crystallize in the sphalerite (zinc-blende ZnS) structure. This structure is very similar to that of diamond but in the III-V compounds, the two cfc sublattices are different the anion sublattice contains the group V atoms and the cation sublattice the group III atoms. An excess of one of the constituents in the melt or in the growing atmosphere can induce excess atoms of one type (group V for instance) to occupy sites of the opposite sublattice (cation sublattice). Such atoms are said to be in an antisite configuration. Other possibilities related with deviations from stoichiometry are the existence of vacancies (absence of atoms on atomic sites) on the sublattice of the less abundant constituent and/or of interstitial atoms of the most abundant one. [Pg.463]

The total energy of the system is one of the most important results obtained from any of the calculational techniques. To study the behavior of an impurity (in a particular charge state) in a semiconductor one needs to know the total energy of many different configurations, in which the impurity is located at different sites in the host crystal. Specific sites in the diamond or zinc-blende structure have been extensively studied because of their relatively high symmetry. Figure 1 shows their location in a three-dimensional view. In Fig. 2, some sites are indicated in a (110) plane... [Pg.606]

In metallic and many semiconducting crystals, the valence electrons are delocalized throughout the solid, so that antisite defects are not accompanied by prohibitive energy costs and are rather common. For example, an important defect in the semiconducting material GaAs, which has the zinc blend structure (Supplementary Material SI), is the antisite defect formed when an As atom occupies a Ga site. [Pg.29]

Sodium chloride structure crystals have all octahedral sites filled, and so cation diffusion will be dependent upon vacancies on octahedral sites. In the zinc blende (sphalerite) structure, adopted by ZnS, for example, half of the tetrahedral sites are empty, as are all of the octahedral sites, so that self-diffusion can take place without the intervention of a population of defects. [Pg.224]

Yellow to orange crystal occurs as two polymorphs, hexagonal alpha form and cubic beta form exhibits stable wurtzite structure at lower temperature, and zinc blende type structure at higher temperatures the beta form converts to alpha form when heated at 750°C in sulfur atmosphere sublimes at 980°C practically insoluble in water (1.3 mg/L at 20°C) Ksp 3.6x10-29 dissolves in dilute mineral acids on heating or concentrated acids at ordinary temperatures (decomposes with liberation of H2S). [Pg.155]


See other pages where Zinc blende, crystal structure is mentioned: [Pg.1368]    [Pg.158]    [Pg.1368]    [Pg.158]    [Pg.20]    [Pg.73]    [Pg.774]    [Pg.31]    [Pg.1185]    [Pg.1209]    [Pg.171]    [Pg.180]    [Pg.29]    [Pg.360]    [Pg.37]    [Pg.46]    [Pg.105]    [Pg.108]    [Pg.184]    [Pg.192]    [Pg.228]    [Pg.17]    [Pg.38]    [Pg.588]    [Pg.589]    [Pg.595]    [Pg.185]    [Pg.72]    [Pg.79]    [Pg.145]    [Pg.49]    [Pg.201]   
See also in sourсe #XX -- [ Pg.454 ]

See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Zinc blend

Zinc blend , structure

Zinc blende

Zinc blende structure

Zinc structure

Zinc, crystal structure

© 2024 chempedia.info