Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-linking alkyl group

Water-insoluble PEI resins are usually obtained by polymer-analogous cross-linking, alkylation of BPEI and LPEI or by introducing a polymerizable group in the side chain of PEI, which is then homo- or copolymerized. [Pg.180]

Esters. Most acryhc acid is used in the form of its methyl, ethyl, and butyl esters. Specialty monomeric esters with a hydroxyl, amino, or other functional group are used to provide adhesion, latent cross-linking capabihty, or different solubihty characteristics. The principal routes to esters are direct esterification with alcohols in the presence of a strong acid catalyst such as sulfuric acid, a soluble sulfonic acid, or sulfonic acid resins addition to alkylene oxides to give hydroxyalkyl acryhc esters and addition to the double bond of olefins in the presence of strong acid catalyst (19,20) to give ethyl or secondary alkyl acrylates. [Pg.150]

Neoprene—phenohc contact adhesives, known for thein high green strength and peel values, contain a resole-type resin prepared from 4-/-butylphenol. The alkyl group increases compatibiHty and reduces cross-linking. This resin reacts or complexes with the metal oxide, eg, MgO, contained in the formulation, and increases the cohesive strength of the adhesive. In fact, the reactivity with MgO is frequently measured to determine the effectiveness of heat-reactive phenoHcs in the formulation. [Pg.303]

The reaction products of TYZOR TPT with 2—4 moles of 1,3-diols having two to three alkyl substituents, such as 2,2,4-trimethyl-l,3-pentanediol, gives complexes that could be used as cross-linking agents for hydroxy group containing powdered lacquer resins (76). [Pg.145]

Maleimides Alkyl and aryl maleimides in small concentrations, e.g., 5-10 wt% significantly enhance yield of cross-link for y-irradiated (in vacuo) NR, cw-l,4-polyisoprene, poly(styrene-co-butadiene) rubber, and polychloroprene rubber. A-phenyhnaleimide and m-phenylene dimaleimide have been found to be most effective. The solubihty of the maleimides in the polymer matrix, reactivity of the double bond and the influence of substituent groups also affect the cross-fink promoting ability of these promoters [82]. The mechanism for the cross-link promotion of maleimides is considered to be the copolymerization of the rubber via its unsaturations with the maleimide molecules initiated by radicals and, in particular, by allyfic radicals produced during the radiolysis of the elastomer. Maleimides have also been found to increase the rate of cross-linking in saturated polymers like PE and poly vinylacetate [33]. [Pg.864]

To date, typical SPE materials are based on silica gel or highly cross-linked styrene-divinylbenzene (PS-DVB). The former is functionalised with distinct chemical groups to yield various sorbents with non-polar or polar characteristics. Non-polar materials are modified with alkyl groups of different chain length (C18, C8, C2), while polar sorbents have cyano-, amino-, or diol-bonded groups. Ion-exchange phases have either anionic or cationic functional groups. [Pg.426]

Currently available BAS include cholestyramine, colestipol and colesevelam hydrochloride (colestimide). Cholestyramine comprises a long-chain polymer of styrene with divinylbenzene trimethylbenzylammonium groups, whereas colestipol is a long-chain polymer of l-chloro-2,3-epoxypropane with diethylenetriamine. Colesevelam HCl is poly(allylamine hydrochloride) cross-linked with epichlorohydrin and alkylated with 1-bromodecane and 6-bromo-hexyl-trimethylammonium bromide. Bile-acid binding is enhanced and stabilised in the latter compound by long hydrophobic sidechains, increased density of primary amines, and quaternary amine sidechains. For this reason, colesevelam HCl exhibits increased affinity, specificity and capacity to bind bile acids compared with the other BAS. Colesevelam HCl also binds dihydroxy and trihydroxy bile acids with equal affinity, contrasting with cholestyramine and colestipol that preferentially bind dihydroxy bile acids (CDCA and deoxycholic acid). The latter BAS can lead to an imbalance towards trihydroxy bile acids and a more hydrophilic bile-acid pool. [Pg.134]


See other pages where Cross-linking alkyl group is mentioned: [Pg.265]    [Pg.248]    [Pg.295]    [Pg.87]    [Pg.51]    [Pg.490]    [Pg.294]    [Pg.24]    [Pg.481]    [Pg.22]    [Pg.414]    [Pg.41]    [Pg.420]    [Pg.53]    [Pg.54]    [Pg.55]    [Pg.866]    [Pg.875]    [Pg.373]    [Pg.227]    [Pg.348]    [Pg.217]    [Pg.244]    [Pg.14]    [Pg.132]    [Pg.180]    [Pg.449]    [Pg.337]    [Pg.93]    [Pg.422]    [Pg.60]    [Pg.353]    [Pg.167]    [Pg.146]    [Pg.543]    [Pg.654]    [Pg.27]    [Pg.163]    [Pg.398]    [Pg.9]    [Pg.365]    [Pg.498]    [Pg.395]    [Pg.399]   
See also in sourсe #XX -- [ Pg.186 ]




SEARCH



Cross-linking groups

© 2024 chempedia.info