Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Critical micelle pressure

Table 17 shows the CMCs of sodium alcohol propoxysulfates at 20°C determined from surface tension measurements by the maximum bubble pressure [127] and Table 18 shows the critical micelle concentrations of sodium pro-poxylated octylphenol and propoxylated nonylphenol sulfates. Surface tension... [Pg.254]

It was mentioned previously that the narrow range of concentrations in which sudden changes are produced in the physicochemical properties in solutions of surfactants is known as critical micelle concentration. To determine the value of this parameter the change in one of these properties can be used so normally electrical conductivity, surface tension, or refraction index can be measured. Numerous cmc values have been published, most of them for surfactants that contain hydrocarbon chains of between 10 and 16 carbon atoms [1, 3, 7], The value of the cmc depends on several factors such as the length of the surfactant chain, the presence of electrolytes, temperature, and pressure [7, 14], Some of these values of cmc are shown in Table 2. [Pg.293]

Aminophthalate anion Atmospheric pressure active nitrogen Analyte pulse perturbation-chemiluminescence spectroscopy Arthromyces rasomus peroxidase Ascorbic acid Adenosine triphosphate Avalanche photodiode 5-Bromo-4-chloro-3-indolyl 2,6-Di-t< r/-bu(yl-4-mclhyl phenol Bioluminescence Polyoxyethylene (23) dodecanol Bovine serum albumin Critical micelle concentration Calf alkaline phosphatase Continuous-addition-of-reagent Continuous-addition-of-reagent chemiluminescence spectroscopy Catecholamines Catechol... [Pg.594]

Micelles are extremely dynamic aggregates. Ultrasonic, temperature and pressure jump techniques have been employed to study various equilibrium constants. Rates of uptake of monomers into micellar aggregates are close to diffusion-controlled306. The residence times of the individual surfactant molecules in the aggregate are typically in the order of 1-10 microseconds307, whereas the lifetime of the micellar entity is about 1-100 miliseconds307. Factors that lower the critical micelle concentration usually increase the lifetimes of the micelles as well as the residence times of the surfactant molecules in the micelle. Due to these dynamics, the size and shape of micelles are subject to appreciable structural fluctuations. [Pg.1080]

For solutions of AEg with different distributions of hydrocarbon chain lengths, the Y log C curves appear to be different than mono-component system. The surface pressure at critical micelle concentration (iTcjic) AEg with a long hydrocarbon chain (C gEg) is Increased by adding the short AEg, but the effect is not significant if the hydrocarbon chain is in a wide distribution (i.g. coconut fatty radical) (Figure 2,3,4). As for the efficiency of surface tension reduction there is a synergestic effect for the mixed... [Pg.298]

The effect of surfactant concentration on critical osmotic pressure was also studied [97], Below a critical surfactant concentration, emulsions are always unstable due to incomplete coverage of the oil-water interfaces. Above this, Jt increases with increasing surfactant concentration until the critical micelle concentration (CMC) is reached, above which it remains more or less constant. [Pg.183]

Changes in surface pressure with time or concentration can be used to measure various fundamental properties. Changes in surface pressure versus protein concentration curves can be used to determine the excess surface concentration (critical micelle concentration), defined as the amount of protein at the surface divided by the surface area. Indicates minimum amount of protein needed to form an emulsion. [Pg.298]

The up to now most frequently used techniques as, for example, vapour pressure osmometry (VPO) or freezing point depression (with its limitation regarding the solvent dependent measuring temperature) are based upon the colligative properties of the system the classical absolute light-scattering and ultracentrifugation techniques are only occasionally and approximately applicable with respect to the determination of CMC values. Evaluation of critical micelle concentrations which are based on these latter methods suffer considerably from the insensitivity of these techniques if measurements below the CMC, i.e., below about 10-3 mol dm-3, are carried out. More sensitive methods will be discussed below. [Pg.126]

Bioaccumulation All classes of surfactant are active surface tension depressants. At the critical micelle concentration (CMC) abrupt changes occur in the characteristic properties of surfactants such that surface and interfacial tensions in an aqueous system are at their minimum while osmotic pressure and surface detergent properties are significantly increased. The CMC for most surfactants is reached around 0.01% (18, 19). These effects have an impact on the potential for bioaccumulation of the pesticide, and in the organisms monitored the presence of Dowanol and nonylphenol increased the accumulation of fenitrothion and aminocarb at least 20-300% respectively, over the accumulation obtained in their absence (20). In effect, these adjuvants... [Pg.354]

In a study of pressure effects on sodium and potassium decanoate micelles, the frequency of the CH2 stretching band was found to increase with pressure, with a discontinuous drop at the critical coagelization pressure (75). These results indicate that external pressure applied to micelles induces hydrocarbon tail disordering, even at pressures as high as 20 kbar, followed by a large increase in tail ordering upon coagel formation. [Pg.12]

Methods. All experiments were performed at 25°C. Critical micelle concentrations were determined using the maximum bubble pressure method on a SensaDyne 6000 surface tensiometer. Dry nitrogen was used as the gas source for the process and was bubbled through the solution at a rate of 1 bubble/sec. Cmc s measured using the Wilhemy plate method were in agreement with those obtained from the bubble tensiometer however, the bubble pressure method was used since it is less susceptible to error due to impurities and the nitrogen environment makes pH control easier. [Pg.124]

The concentration at which micelle formation becomes significant is called the critical micelle concentration (cmc). The one is a property of the surfactant and several other factors, including the temperature, pressure, and the presence and nature of additives, since micellization is opposed by thermal and electrostatic forces. A low cmc is produced by increasing the molecular mass of the lipophilic part of the molecule, lowering the temperature (usually), and adding electrolyte (usually). For exam-... [Pg.82]

The physical properties of surface active agents differ from those of smaller or nonamphipathic molecules in one major aspect, namely, the abrupt changes in their properties above a critical concentration. This is illustrated in Fig. 1, in which a number of physical properties (surface tension, osmotic pressure, turbidity, solubilization, magnetic resonance, conductivity, and self-diffusion) are plotted as a function of concentration. All these properties (interfacial and bulk) show an abrupt change at a particular concentration, which is consistent with the fact that above this concentration, surface active ions or molecules in solution associate to form larger units. These association units are called micelles and the concentration at which this association phenomenon occurs is known as the critical micelle concentration (cmc). [Pg.507]

In dilute aqueous solutions, surfactants have normal electrolyte or solute characteristics and are formed at the interface. As the surfactant concentration increases beyond the well-defined concentrations (i.e., critical micelle concentration, c.m.c.), the surfactant molecules become more organized aggregates and form micelles. At the c.m.c., the physicochemical characteristics of the system (osmotic pressure, turbidity, surface tension, and electrical conductivity) are suddenly changed, as shown in Figure 4.19. [Pg.236]

If surfactant is added to a suspension polymerization system, a number of phenomena may occur. If the surfactant is added in small amounts (below the critical micelle concentration or CMC), the reduction in interfacial tension between the organic and aqueous phases will result in smaller monomer droplets, but it has hardly any other effect. If surfactant is added above the CMC, and an oil-soluble initiator is used, the process is commonly termed a microsuspension polymerization. Due to the reduced interfacial tension, the droplet diameter (and hence bead diameter) is reduced to approximately 10-40 pm. Little polymerization takes place in the aqueous phase or in particles generated from surfactant micelles because of the hydrophobic nature of the initiator. However, some smaller particles initiated from surfactant micelles may be found. The kinetics are still essentially those of a bulk free radical polymerization. Microsuspension polymerization is used to produce pressure-sensitive adhesives for repositionable notes. [Pg.134]


See other pages where Critical micelle pressure is mentioned: [Pg.332]    [Pg.332]    [Pg.480]    [Pg.480]    [Pg.481]    [Pg.170]    [Pg.93]    [Pg.582]    [Pg.60]    [Pg.33]    [Pg.118]    [Pg.152]    [Pg.114]    [Pg.340]    [Pg.866]    [Pg.48]    [Pg.48]    [Pg.50]    [Pg.50]    [Pg.53]    [Pg.96]    [Pg.3]    [Pg.115]    [Pg.142]    [Pg.101]    [Pg.382]   
See also in sourсe #XX -- [ Pg.332 ]




SEARCH



Critical micelle concentration pressure

Critical micelle concentration pressure effect

Critical micelle concentration surface pressure

Pressure critical

© 2024 chempedia.info