Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cracking catalysts pore structure

The two limiting cases for the distribution of deactivated catalyst sites are representative of some of the situations that can be encountered in industrial practice. The formation of coke deposits on some relatively inactive cracking catalysts would be expected to occur uniformly throughout the catalyst pore structure. In other situations the coke may deposit as a peripheral shell that thickens with time on-stream. Poisoning by trace constituents of the feed stream often falls in the pore-mouth category. [Pg.464]

Until the recent discovery of UTD-1 and CIT-5, the largest pore zeolites known were composed of pore structures having 12-MRs or less. Many of these materials such as zeolite Y have enjoyed immense commercial success as catalysts (2). There is some evidence from catalytic cracking data that suggests the inverse selectivity found with the 12-MR pore ( 7.5 A) structure such as for SSZ-24 (Chevron) might be used to enhance octane values of fuel (3). However, small increases in pore size as well as variations in pore shape and dimensionality could further improve the catalysts. Pores with greater than a 12-MR structure might allow the conversion of... [Pg.219]

The CVD catalyst exhibits good catalytic performance for the selective oxidation/ammoxida-tion of propene as shown in Table 8.5. Propene is converted selectively to acrolein (major) and acrylonitrile (minor) in the presence of NH3, whereas cracking to CxHy and complete oxidation to C02 proceeds under the propene+02 reaction conditions without NH3. The difference is obvious. HZ has no catalytic activity for the selective oxidation. A conventional impregnation Re/HZ catalyst and a physically mixed Re/HZ catalyst are not selective for the reaction (Table 8.5). Note that NH3 opened a reaction path to convert propene to acrolein. Catalysts prepared by impregnation and physical mixing methods also catalyzed the reaction but the selectivity was much lower than that for the CVD catalyst. Other zeolites are much less effective as supports for ReOx species in the selective oxidation because active Re clusters cannot be produced effectively in the pores of those zeolites, probably owing to its inappropriate pore structure and acidity. [Pg.246]

Faced with the need of obtaining more transportation fuels from a barrel of crude, Ashland developed the Reduced Crude Conversion Process (RCC ). To support this development, a residuum or reduced crude cracking catalyst was developed and over 1,000 tons were produced and employed in commercial operation. The catalyst possessed a large pore volume, dual pore structure, an Ultrastable Y zeolite with an acidic matrix equal in acidity to the acidity of the zeolite, and was partially treated with rare earth to enhance cracking activity and to resist vanadium poisoning. [Pg.308]

Kaolin had little or no cracking activity, and catalyst activity as tested in the laboratory was directly related to silica-alumina gel content. However, the catalyst performed much better in commercial tests than anticipated from laboratory testing. Undoubtedly, this open structure encountered much less severe conditions at the outer surface of the microsphere during regenerations and made internal catalytic surfaces more readily available. This first of the so-called "semisynthetics" was called Nalco 783, and the matrix is still used in many forms some 28 years later.(7,13) Today it is estimated that some 200,000 tons/yr. of kaolin clay is used for cracking catalyst manufacture as reported by Georgia Kaolin Corporation.(24) Figure 10 shows the pore volume distribution for Nalco 783 and two other commercial semisynthetics from that period. [Pg.321]

These cracking and H-addition processes also require catalysts, and a major engineering achievement of the 1970s was the development of hydroprocessing catalysts, in particular cobalt molybdate on alumina catalysts. The active catalysts are metal sulfides, which are resistant to sulfur poisoning. One of the major tasks was the design of porous pellet catalysts with wide pore structures that are not rapidly poisoned by heavy metals. [Pg.65]

Vladimir Haensel Chemical Characteristics and Structure of Cracking Catalysts A. G. Oblad, T. H. Milliken, Jr., and G. A. Mills Reaction Rates and Selectivity in Catalyst Pores Ahlborn Wheeler Nickel Sulfide Catalysts William J. Kirkpatrick... [Pg.397]

More recently, various attempts have been made to develop cracking catalysts from pillared smectite clays, in which the layers are separated and held apart by the intercalation of large cations. Pillared clays (PILCs) have large surface areas within fairly well-ordered micropore structures (pore widths in die approximate range 0.6-1.2 nm). It is not surprising that these materials have attracted considerable interest with the prospect of an alternative type of catalytic shape selectivity (Thomas, 1994 Thomas etal., 1997 Fripiat, 1997). [Pg.356]

Synthetic zeolites have gained importance as industrial catalysts for cracking and isomerization processes, because of their unique pore structures, which allow the shape-selective conversion of hydrocarbons, combined with their surface acidity, which makes them active for acid-catalyzed reactions. Many attempts have been made to introduce redox-active TMI into zeolite structures to create catalytic activity for the selective oxidation and ammoxidation of hydrocarbons as well as for SCR of nitrogen oxides in effluent gases (69-71). In particular, ZSM-5 doped with Fe ions has attracted attention since the surprising discovery of Panov et al. (72) that these materials catalyze the one-step selective oxidation of benzene to phenol... [Pg.287]


See other pages where Cracking catalysts pore structure is mentioned: [Pg.62]    [Pg.233]    [Pg.194]    [Pg.106]    [Pg.6]    [Pg.544]    [Pg.553]    [Pg.13]    [Pg.163]    [Pg.267]    [Pg.277]    [Pg.316]    [Pg.64]    [Pg.240]    [Pg.240]    [Pg.381]    [Pg.285]    [Pg.591]    [Pg.96]    [Pg.34]    [Pg.12]    [Pg.64]    [Pg.71]    [Pg.5]    [Pg.288]    [Pg.289]    [Pg.905]    [Pg.198]    [Pg.31]    [Pg.181]    [Pg.104]    [Pg.42]    [Pg.310]    [Pg.48]    [Pg.54]    [Pg.147]    [Pg.147]    [Pg.196]    [Pg.203]   
See also in sourсe #XX -- [ Pg.89 , Pg.93 , Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 , Pg.145 ]




SEARCH



Catalysts structured

Catalysts, structures

Cracking catalyst

Cracking catalysts structure

Cracks cracked structures

Pore structure

© 2024 chempedia.info