Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Covalent bonding prediction

As with N2, the bond order is equal to the number of covalent bonds predicted by the Lewis structure. Are the different bond orders of 02 (two) and N2 (three) reflected in their properties ... [Pg.56]

Topological analysis of ELF yields large diversity of the the nitrogen-oxygen interactions in contrast to an uniform single covalent bond, predicted by the Lewis... [Pg.548]

A covalent bond (or particular nomial mode) in the van der Waals molecule (e.g. the I2 bond in l2-He) can be selectively excited, and what is usually observed experimentally is that the unimolecular dissociation rate constant is orders of magnitude smaller than the RRKM prediction. This is thought to result from weak coupling between the excited high-frequency intramolecular mode and the low-frequency van der Waals intemiolecular modes [83]. This coupling may be highly mode specific. Exciting the two different HE stretch modes in the (HF)2 dimer with one quantum results in lifetimes which differ by a factor of 24 [84]. Other van der Waals molecules studied include (NO)2 [85], NO-HF [ ], and (C2i J )2 [87]. [Pg.1030]

In addition to testing predictions of tire patlrway model in proteins, experiments have also examined tire prediction tlrat tire decay across a hydrogen bond (from heteroatom to heteroatom) should be about as costly as tire decay across two covalent bonds. Indeed, by syntlresizing a family of hydrogen bonded aird covalently bonded systems witlr equal bond counts (according to this recipe), it was demonstrated tlrat coupling across hydrogen bonded... [Pg.2978]

The theory predicts high stabilities for hard acid - hard base complexes, mainly resulting from electrostatic interactions and for soft acid - soft base complexes, where covalent bonding is also important Hard acid - soft base and hard base - soft acid complexes usually have low stability. Unfortunately, in a quantitative sense, the predictive value of the HSAB theory is limited. Thermodynamic analysis clearly shows a difference between hard-hard interactions and soft-soft interactions. In water hard-hard interactions are usually endothermic and occur only as a result of a gain in entropy, originating from a liberation of water molecules from the hydration shells of the... [Pg.28]

Theoretical studies of diffusion aim to predict the distribution profile of an exposed substrate given the known process parameters of concentration, temperature, crystal orientation, dopant properties, etc. On an atomic level, diffusion of a dopant in a siUcon crystal is caused by the movement of the introduced element that is allowed by the available vacancies or defects in the crystal. Both host atoms and impurity atoms can enter vacancies. Movement of a host atom from one lattice site to a vacancy is called self-diffusion. The same movement by a dopant is called impurity diffusion. If an atom does not form a covalent bond with siUcon, the atom can occupy in interstitial site and then subsequently displace a lattice-site atom. This latter movement is beheved to be the dominant mechanism for diffusion of the common dopant atoms, P, B, As, and Sb (26). [Pg.349]

Similarly, in studies of lamellar interfaces the calculations using the central-force potentials predict correctly the order of energies for different interfaces but their ratios cannot be determined since the energy of the ordered twin is unphysically low, similarly as that of the SISF. Notwithstcinding, the situation is more complex in the case of interfaces. It has been demonstrated that the atomic structure of an ordered twin with APB type displacement is not predicted correctly in the framework of central-forces and that it is the formation of strong Ti-Ti covalent bonds across the interface which dominates the structure. This character of bonding in TiAl is likely to be even more important in more complex interfaces and it cannot be excluded that it affects directly dislocation cores. [Pg.367]

Notice that the beryllium atom has no unpaired electrons, the boron atom has one, and the carbon atom two. Simple valence bond theory would predict that Be, like He, should not form covalent bonds. A boron atom should form one bond, carbon two. Experience tells us that these predictions are wrong. Beryllium forms two bonds in BeF2 boron forms three bonds in BF3. Carbon ordinarily forms four bonds, not two. [Pg.186]

In Chapter 7, we used valence bond theory to explain bonding in molecules. It accounts, at least qualitatively, for the stability of the covalent bond in terms of the overlap of atomic orbitals. By invoking hybridization, valence bond theory can account for the molecular geometries predicted by electron-pair repulsion. Where Lewis structures are inadequate, as in S02, the concept of resonance allows us to explain the observed properties. [Pg.650]

In order to attempt a more quantitative description one may start from the early theoretical considerations of Boudart9 who was first to tackle the problem of predicting the change in heats of adsorption with changing work function O. According to his early semiempirical electrostatic model when the work function of a surface changes by AO then the heat of adsorption, -AHad, of covalently bonded adsorbed species should change by ... [Pg.367]

The characteristics of a covalent bond between two atoms are due mainly to the properties of the atoms themselves and vary only a little with the identities of the other atoms present in a molecule. Consequently, we can predict some characteristics of a bond with reasonable certainty once we know the identities of the two bonded atoms. For instance, the length of the bond and its strength are approximately the same regardless of the molecule in which it is found. Thus, to understand the properties of a large molecule, such as how DNA replicates in our cells and transmits genetic information, we can study the character of C=0 and N- H bonds in much simpler compounds, such as formaldehyde, H2C=0, and ammonia, NH,. [Pg.204]

Jorgensen CK (1978) Predictable Quarkonium Chemistry. 34 19-38 Jorgensen CK (1966) Recent Progress in Ligand Field Theory. 1 3-31 Jorgensen CK (1967) Relationship Between Softness, Covalent Bonding, lonicity and Electric Polarizability. 3 106-115... [Pg.248]

In this contribution it is shown that local density functional (LDF) theory accurately predicts structural and electronic properties of metallic systems (such as W and its (001) surface) and covalently bonded systems (such as graphite and the ethylene and fluorine molecules). Furthermore, electron density related quantities such as the spin density compare excellently with experiment as illustrated for the di-phenyl-picryl-hydrazyl (DPPH) radical. Finally, the capabilities of this approach are demonstrated for the bonding of Cu and Ag on a Si(lll) surface as related to their catalytic activities. Thus, LDF theory provides a unified approach to the electronic structures of metals, covalendy bonded molecules, as well as semiconductor surfaces. [Pg.49]

A number of empirical methods exist for the adjustment of covalent bond lengths for ionic effects.34,35 These are based primarily on formulas that involve the sum of the covalent radii corrected by a factor that is dependent on the electronegativity difference between the atoms. In many instances, quite good agreement is obtained between the predicted and experimental values, as shown by the listing in Table I. [Pg.5]

In summary, the Lewis-like model seems to predict the composition, qualitative molecular shape, and general forms of hybrids and bond functions accurately for a wide variety of main-group derivatives of transition metals. The sd-hybridization and duodectet-rule concepts for d-block elements therefore appear to offer an extended zeroth-order Lewis-like model of covalent bonding that spans main-group and transition-metal chemistry in a satisfactorily unified manner. [Pg.433]


See other pages where Covalent bonding prediction is mentioned: [Pg.2222]    [Pg.99]    [Pg.240]    [Pg.65]    [Pg.32]    [Pg.46]    [Pg.66]    [Pg.264]    [Pg.53]    [Pg.804]    [Pg.165]    [Pg.39]    [Pg.171]    [Pg.233]    [Pg.317]    [Pg.327]    [Pg.308]    [Pg.151]    [Pg.183]    [Pg.185]    [Pg.26]    [Pg.241]    [Pg.615]    [Pg.297]    [Pg.270]    [Pg.8]    [Pg.67]    [Pg.37]    [Pg.249]    [Pg.209]    [Pg.258]    [Pg.65]    [Pg.249]    [Pg.252]    [Pg.93]    [Pg.278]   
See also in sourсe #XX -- [ Pg.14 , Pg.17 ]




SEARCH



Covalent bond predicting

Covalent bond predicting

Nonpolar covalent bonding prediction

Polar covalent bonding prediction

© 2024 chempedia.info