Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coupling reactions palladium® acetate

The Heck coupling reaction appeared to be a route of choice to achieve the synthesis of the modified-DIOP ligands. We previously studied the palladium-catalyzed coupling of acrolein and acrolein acetals with several polyaromatic and heteroaromatic bromides either in the presence of homogeneous or heterogeneous catalytic systems (6, 7). After optimization of the reaction conditions, high conversions and selectivities were achieved except with anthracenyl derivatives (8). Based on these results, we developed the synthesis of the desired ligands. The... [Pg.185]

The nature of the palladium source was found to have a profound effect on the rate of the coupling reaction. In particular, Pd(OAc)2 provided a significantly faster reaction rate than all other palladium sources [17]. It is interesting to note that either a 1 1 or 2 1 ratio of ligand to Pd provided competent in situ generated catalysts however the preformed catalyst Pd[(Pt-Bu3)2] [23] afforded -80% conversion whereas with [PdBr(Pt-Bu3)]2 [24], the reachon went to completion. These observations indicate that the acetate plays an important role in the catalytic system. [Pg.233]

A palladium catalyst with a less electron-rich ligand, 2,2-dipyridyl-methylamine-based palladium complexes (4.2), is effective for coupling of aryl iodides or bromides with terminal alkynes in the presence of pyrrolidine and tetrabutylammonium acetate (TBAB) at 100°C in water.37 However, the reactions were shown to be faster in NMP solvent than in water under the reaction conditions. Palladium-phosphinous acid (POPd) was also reported as an effective catalyst for the Sonogashira cross-coupling reaction of aryl alkynes with aryl iodides, bromides, or chlorides in water (Eq. 4.18).38... [Pg.109]

Another compound 9 with three heterocyclic rings linearly fused (5 5 5) with two heteroatoms has been prepared from 1,1 -carbonyl diindole 297 <2001T5199>. Palladium-mediated coupling of the 2- and 2 -positions of 297 afforded the 1,1 -carbonyl-2,2 -biindolyl 9. 1,1 -Carbonyl diindole 297 was in turn obtained in 41% yield from 1,1 -carbonyldiimidazole 296 by reaction with indole in DMSO at 125 °C. The palladium-catalyzed coupling step afforded the desired product 9 in low yield and required a stoichiometric amount of palladium acetate. Therefore, it was felt prohibitively expensive. Addition of various co-oxidants (Ac20, Mn02, and Cu(OAc)2, etc) to make the reaction catalytic in palladium did not result in any improvement of the yield of 18 (Scheme 53). [Pg.671]

Photothermal decomposition of palladium acetate by scanned cw Ar+ laser irradiation produces metal features that exhibit pronounced periodic structure as a function of laser power, scan speed, substrate and beam diameter, as shown in Figures 3 and 4. The periodic structure is a function of the rate at which the film is heated by absorption of the incident laser radiation coupled with the rate at which the heat of the decomposition reaction is liberated. This coupling generates a reaction front that outruns the scanning laser until quenched by thermal losses, the process to be repeated when the laser catches up and reaches unreacted material. Clearly, such a thermal process is also affected by the thermal conductivity of the substrate, the optical absorption of the substrate in those cases where the overlying film is not fully absorbing,... [Pg.295]

Several palladium catalysts for formation of aryl sulfides from aryl halides have been investigated more recently. A combination of Pd2(dba)3 and DPEphos catalyzed the formation of a broad range of diaryl sulfides in the presence of 1 mol.% palladium and NaO-t-Bu base in toluene solvent.12,rThe highest yields of alkyl aryl sulfides were obtained from aryl triflates and n-butyl thiol catalyzed by a combination of palladium acetate and BINAP. However, these reactions contained 10 mol.% catalyst, were long, and required deactivated aryl triflates. A combination of Pd2(dba)3 and DPPF catalyzed the coupling of thiols with resin-bound aryl halides.121... [Pg.384]

The palladium-catalyzed cross-coupling reaction featured in this procedure occurs under neutral conditions in the presence of many synthetically useful functional groups (e.g. alcohol, ester, nitro, acetal, ketone, and aldehyde). The reaction works best in N,N-dimethylformamide with bis(triphenylphosphine)palladium(ll) chloride, PdCI2(PPh3)2, as the catalyst. Lithium chloride is added to prevent decomposition of the catalyst.143 13 It is presumed that conversion of the intermediate aryl palladium triflate to an aryl palladium chloride is required for the transmetallation step to proceed.9... [Pg.53]

Tributylstannyl)-3-cyclobutene-1,2-diones and 4-methyl-3-(tributylstan-nyl)-3-cyclobutene-l,2-dione 2-ethylene acetals undergo the palladium/copper-catalyzed cross coupling with acyl halides, and palladium-catalyzed carbon-ylative cross coupling with aryl/heteroaryl iodides [45]. The coupling reaction of alkenyl (phenyl )iodonium triflates is also performed by a palladium/copper catalyst [46],... [Pg.121]

When furan or substituted furans were subjected to the classic oxidative coupling conditions [Pd(OAc)2 in refluxing HOAc], 2,2 -bifuran was the major product, whereas 2,3 -bifuran was a minor product [12,13]. Similar results were observed for the arylation of furans using Pd(OAc)2 [14]. The oxidative couplings of furan or benzo[i]furan with olefins also suffered from inefficiency [15]. These reactions consume at least one equivalent of palladium acetate, and therefore have limited synthetic utility. [Pg.269]

The procedure described here incorporates a number of modifications to the Suzuki coupling that result in a sound, efficient and scaleable means of synthesizing biaryls. First, the catalytic use of palladium acetate and triphenylphosphine to generate palladium(O) eliminates the need for the expensive air and light sensitive tetrakis(triphenylphosphine)palladium(0). No purification of reagents is necessary, no special apparatus is required, and rigorous exclusion of air from the reaction mixture is not necessary. Furthermore, homo-coupled products are not present in significant levels (as determined by 500 MHz 1H NMR). [Pg.176]

As an alternative to the Ullmann reaction, haloarenes are coupled to form the biaryls using palladium acetate in the presence of abase and tetra-n-butylammonium bromide [24], Yields are generally high (>70%) but dehalogenation of the haloarene may also occur as a side reaction. [Pg.292]

The 5-iodo derivative 1016 was prepared by reaction of the acetate of 999 with iodine monochloride, and subsequent deprotection using sodium methoxide in methanol. The protected derivative 1016 is a suitable precursor for use in cross-coupling reactions to prepare the unsaturated analogs 1018 and 1019. Thus, reaction of 1016 with methyl acrylate in the presence of palladium(II) acetate gave the ( )-5-(2-methoxycarbonylvinyl)uracil 1017 this was converted into the ( )-5-(2-bromovinyl) analog 1019 by alkaline... [Pg.164]

Lee CKY, Holmes AB, Ley SV, McConvey IF, Al-Duri B, Leeke GA, Santos RCD, Seville JPK. Efficient batch and continuous fiow Suzuki cross-coupling reactions under mild conditions, catalysed by polyuiea-encapsulated palladium(II) acetate and tetra-n-butylammo-nium salts. Chem Commun 2005 2175-2177. [Pg.201]

Although the Sonogashira reaction is normally performed with a copper cocatalyst, a copper-free, one-pot procedure for direct coupling with l-aryl-2-trimethylsilylacetylenes has been developed <2005T2697>. The procedure uses a mixture of palladium acetate and tri(o-tolyl)phosphine as catalyst in the presence of tetra- -butylammonium chloride... [Pg.152]


See other pages where Coupling reactions palladium® acetate is mentioned: [Pg.8]    [Pg.57]    [Pg.136]    [Pg.154]    [Pg.535]    [Pg.545]    [Pg.930]    [Pg.207]    [Pg.228]    [Pg.35]    [Pg.38]    [Pg.73]    [Pg.141]    [Pg.187]    [Pg.190]    [Pg.449]    [Pg.294]    [Pg.295]    [Pg.304]    [Pg.383]    [Pg.195]    [Pg.150]    [Pg.154]    [Pg.231]    [Pg.168]    [Pg.263]    [Pg.33]    [Pg.139]    [Pg.68]    [Pg.227]    [Pg.195]    [Pg.68]    [Pg.154]    [Pg.183]    [Pg.189]    [Pg.98]   
See also in sourсe #XX -- [ Pg.232 ]




SEARCH



Palladium acetate

Palladium acetate reactions

Palladium coupling

Palladium coupling reaction

© 2024 chempedia.info