Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coupling, oxidation-phosphorylation

M21. Miiller-Hocker, J., Stiinkel, S., Pongratz, D., and Hiibner, G., Focal deficiency of cytochrome-c-oxidase and of mitochondrial ATPase combined with loosely coupled oxidative phosphorylation in the skeletal muscle of a patient with progressive external ophthalmoplegia An enzyme histochemical, immunocytochemical and fine structure study. J. Neurol. Sci. 69, 27-36 (1985). [Pg.124]

See also Chemiosmotic Coupling, Oxidative Phosphorylation, Uncoupling ETS and Oxidative Phosphorylation, Respiratory Control... [Pg.352]

The electrochemical gradient couples the rate of the electron transport chain to the rate of ATP synthesis. Because electron flow requires proton pumping, electron flow cannot occur faster than protons are used for ATP synthesis (coupled oxidative phosphorylation) or returned to the matrix by a mechanism that short circuits the ATP synthase pore (uncoupling). [Pg.390]

As discussed, ATP synfliesis is driven by flie proton motive force of the electrochemical gradient set up during the electron flow through the respiratory chain. For this reason, the two processes of oxidation and phosphorylation are described as being coupled (oxidative phosphorylation). In normally functioning, tightly coupled mitochondria oxidation proceeds primarily when ATP is synthesized from ADP. The dependence of respiration on ADP levels is defined as respiratory control, a key property of coupled mitochondria. The respiratory... [Pg.288]

As the loss of oxidative phosphorylation was not due to the absence of proteins, it appeared to us that the results indicate that some change in the general properties of the membrane occurs. A property of mitochondria essential for coupled oxidative phosphorylation is the impermeability of the inner membrane to protons. Mitochondria from unsaturated-fatty-acid-de-pleted cells have little permeability barrier to proton entry When a small amount of acid is added to a suspension of such mitochondria, there is a rapid equilibration of protons between the mitochondrial matrix and the... [Pg.115]

Glycolysis and the citric acid cycle (to be discussed in Chapter 20) are coupled via phosphofructokinase, because citrate, an intermediate in the citric acid cycle, is an allosteric inhibitor of phosphofructokinase. When the citric acid cycle reaches saturation, glycolysis (which feeds the citric acid cycle under aerobic conditions) slows down. The citric acid cycle directs electrons into the electron transport chain (for the purpose of ATP synthesis in oxidative phosphorylation) and also provides precursor molecules for biosynthetic pathways. Inhibition of glycolysis by citrate ensures that glucose will not be committed to these activities if the citric acid cycle is already saturated. [Pg.619]

A High-Energy Chemical Intermediate Coupling Oxidation and Phosphorylation Proved Elusive... [Pg.693]

The two processes are electron transport and oxidative phosphorylation. NADH is reoxidised by the process of electron transport using the electron transport chain and the energy released from this process is harnessed by oxidative phosphorylation to generate ATP. We noted earlier that the two processes are intimately linked or coupled. Normally one cannot proceed without the other. [Pg.130]

The reason for this is that reoxidation of NADH via the alternative electron transport chain (not coupled to oxidative phosphorylation) liberates heat. [Pg.135]

Figure 12-8. Principles of the chemiosmotic theory of oxidative phosphorylation. The main proton circuit is created by the coupling of oxidation in the respiratory chain to proton translocation from the inside to the outside of the membrane, driven by the respiratory chain complexes I, III, and IV, each of which acts as a protonpump. Q, ubiquinone C, cytochrome c F Fq, protein subunits which utilize energy from the proton gradient to promote phosphorylation. Uncoupling agents such as dinitrophenol allow leakage of H" across the membrane, thus collapsing the electrochemical proton gradient. Oligomycin specifically blocks conduction of H" through Fq. Figure 12-8. Principles of the chemiosmotic theory of oxidative phosphorylation. The main proton circuit is created by the coupling of oxidation in the respiratory chain to proton translocation from the inside to the outside of the membrane, driven by the respiratory chain complexes I, III, and IV, each of which acts as a protonpump. Q, ubiquinone C, cytochrome c F Fq, protein subunits which utilize energy from the proton gradient to promote phosphorylation. Uncoupling agents such as dinitrophenol allow leakage of H" across the membrane, thus collapsing the electrochemical proton gradient. Oligomycin specifically blocks conduction of H" through Fq.
Figure 12-14. The creatine phosphate shuttle of heart and skeletal muscle. The shuttle allows rapid transport of high-energy phosphate from the mitochondrial matrix into the cytosol. CKg, creatine kinase concerned with large requirements for ATP, eg, muscular contraction CIC, creatine kinase for maintaining equilibrium between creatine and creatine phosphate and ATP/ADP CKg, creatine kinase coupling glycolysis to creatine phosphate synthesis CK, , mitochondrial creatine kinase mediating creatine phosphate production from ATP formed in oxidative phosphorylation P, pore protein in outer mitochondrial membrane. Figure 12-14. The creatine phosphate shuttle of heart and skeletal muscle. The shuttle allows rapid transport of high-energy phosphate from the mitochondrial matrix into the cytosol. CKg, creatine kinase concerned with large requirements for ATP, eg, muscular contraction CIC, creatine kinase for maintaining equilibrium between creatine and creatine phosphate and ATP/ADP CKg, creatine kinase coupling glycolysis to creatine phosphate synthesis CK, , mitochondrial creatine kinase mediating creatine phosphate production from ATP formed in oxidative phosphorylation P, pore protein in outer mitochondrial membrane.
Spanning the membrane are ATP synthase complexes that use the potential energy of the proton gradient to synthesize ATP from ADP and P,. In this way, oxidation is closely coupled to phosphorylation to meet the energy needs of the cell. [Pg.101]

Figure 16-2. The citric acid cycle the major catabolic pathway for acetyl-CoA in aerobic organisms. Acetyl-CoA, the product of carbohydrate, protein, and lipid catabolism, is taken into the cycle, together with HjO, and oxidized to CO2 with the release of reducing equivalents (2H). Subsequent oxidation of 2H in the respiratory chain leads to coupled phosphorylation of ADP to ATP. For one turn of the cycle, 11 are generated via oxidative phosphorylation and one arises at substrate level from the conversion of succinyl-CoA to succinate. Figure 16-2. The citric acid cycle the major catabolic pathway for acetyl-CoA in aerobic organisms. Acetyl-CoA, the product of carbohydrate, protein, and lipid catabolism, is taken into the cycle, together with HjO, and oxidized to CO2 with the release of reducing equivalents (2H). Subsequent oxidation of 2H in the respiratory chain leads to coupled phosphorylation of ADP to ATP. For one turn of the cycle, 11 are generated via oxidative phosphorylation and one arises at substrate level from the conversion of succinyl-CoA to succinate.
This potential, or protonmotive force as it is also called, in turn drives a number of energy-requiring functions which include the synthesis of ATP, the coupling of oxidative processes to phosphorylation, a metabohc sequence called oxidative phosphorylation and the transport and concentration in the cell of metabolites such as sugars and amino acids. This, in a few simple words, is the basis of the chemiosmotic theory linking metabolism to energy-requiring processes. [Pg.257]

A remarkable feature of the bioenergetic oxidation reactions of nutrients in cells is the fact that they are always coupled to another reaction, that of synthesis of the energy-rich chemical substance adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (oxidative phosphorylation Engelgardt and Ljubimova, 1939) ... [Pg.585]

The individual steps of the multistep chemical reduction of COj with the aid of NADPHj require an energy supply. This supply is secured by participation of ATP molecules in these steps. The chloroplasts of plants contain few mitochondria. Hence, the ATP molecules are formed in plants not by oxidative phosphorylation of ADP but by a phosphorylation reaction coupled with the individual steps of the photosynthesis reaction, particularly with the steps in the transition from PSII to PSI. The mechanism of ATP synthesis evidently is similar to the electrochemical mechanism involved in their formation by oxidative phosphorylation owing to concentration gradients of the hydrogen ions between the two sides of internal chloroplast membranes, a certain membrane potential develops on account of which the ATP can be synthesized from ADP. Three molecules of ATP are involved in the reaction per molecule of COj. [Pg.588]

Carbonylcyanide-4-trilluoromethoxyphenylhydrazone is known as a protonophore or uncoupler of oxidative phosphorylation in bioelectrochemistry because it disrupts the tight coupling between electron transport and the ATP synthase. Uncouplers act by dis-... [Pg.665]

Adolfson, R., and Moudrianokis, E.N. (1976) Molecular polymorphism and mechanisms of activation and deactivation of the hydrolytic function of the coupling factor of oxidative phosphorylation. Biochemistry 15, 4164—4170. [Pg.1041]

All the ATP comes from oxidative phosphorylation coupled to the metabolism of acetyl-CoA by the TCA cycle. No oxygen, no p oxidation. [Pg.180]

The biochemical classification of mitochondrial DNA is based on the five major steps of mitochondrial metabolism. These steps are illustrated in Figure 42-3 and divide mitochondrial diseases into five groups defects of mitochondrial transport, defects of substrate utilization, defects of the Krebs cycle, defects of the respiratory chain and defects of oxidation-phosphorylation coupling. [Pg.708]

The driving force of oxidative phosphorylation is the difference between the electron transfer potential of NADH or FADH2 relative to that of 02. For the redox couple... [Pg.98]

Stimulated by nature and in particular by the idea of modelling biotic coupled reaction systems such as ion transport and oxidative phosphorylation, recent attention has focused on a new generation of abiotic host... [Pg.1]

By the mid-1950s, therefore, it had become clear that oxidation in the tricarboxylic acid cycle yielded ATP. The steps had also been identified in the electron transport chain where this apparently took place. Most biochemists expected oxidative phosphorylation would occur analogously to substrate level phosphorylation, a view that was tenaciously and acrimoniously defended. Most hypotheses entailed the formation of some high-energy intermediate X Y which, in the presence of ADP and P( would release X and Y and yield ATP. A formulation of the chemical coupling hypothesis was introduced by Slater in 1953,... [Pg.94]


See other pages where Coupling, oxidation-phosphorylation is mentioned: [Pg.243]    [Pg.133]    [Pg.149]    [Pg.456]    [Pg.20]    [Pg.300]    [Pg.248]    [Pg.138]    [Pg.243]    [Pg.133]    [Pg.149]    [Pg.456]    [Pg.20]    [Pg.300]    [Pg.248]    [Pg.138]    [Pg.293]    [Pg.65]    [Pg.301]    [Pg.578]    [Pg.626]    [Pg.702]    [Pg.727]    [Pg.56]    [Pg.130]    [Pg.427]    [Pg.92]    [Pg.187]    [Pg.415]    [Pg.41]    [Pg.214]    [Pg.42]    [Pg.711]   
See also in sourсe #XX -- [ Pg.35 , Pg.36 ]




SEARCH



Oxidative phosphorylation

Oxidative phosphorylation coupling

Phosphorylation coupling

© 2024 chempedia.info