Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coupling acetylene, palladium

Csp-Csp Cross-coupling. The palladium and copper cocatalyzed cross-coupling between vinyl/aryl halides or triflates and terminal acetylenes, known as the Sonogashira reaction, is the most straightforward and powerful method for the construction of Csp -Csp bonds with retention of the vinyl stereochemistry and has been widely reviewed (eq 26). ... [Pg.225]

Palladium also catalyses coupling of haloindolcs with acetylenes. The reaction is carried out in the presence of Cu(I) and presumably involves a copper acetylide as an intermediate[14]. [Pg.112]

Transition-Metal Catalyzed Cyclizations. o-Halogenated anilines and anilides can serve as indole precursors in a group of reactions which are typically cataly2ed by transition metals. Several catalysts have been developed which convert o-haloanilines or anilides to indoles by reaction with acetylenes. An early procedure involved coupling to a copper acetyUde with o-iodoaniline. A more versatile procedure involves palladium catalysis of the reaction of an o-bromo- or o-trifluoromethylsulfonyloxyanihde with a triaLkylstaimylalkyne. The reaction is conducted in two stages, first with a Pd(0) and then a Pd(II) catalyst (29). [Pg.87]

Due to their successful synthesis of 2-(4 -chlorophenyl)-4-iodoquinoline from the corresponding precursor acetylene, Arcadi et al. (99T13233) developed a one-step synthesis of 2,4-disubstituted quinolines via palladium-catalyzed coupling reactions. An example is the Heck reaction of 4-iodoquinoline (131) with a-acetamidoacrylate (132). This one-pot synthesis yielded adduct 133 in 50% overall yield after purification via flash chromatography. [Pg.22]

Haloalkynes (R—C=C—X) react with ArSnBu3 and Cul to give R—C= C—Ar. Acetylene reacts with two equivalents of iodobenzene, in the presence of a palladium catalyst and Cul, to give 1,2-diphenylethyne. 1-Trialkylsilyl alkynes react with 1-haloalkynes, in the presence of a CuCl catalyst, to give diynes and with aryl triflates to give 1-aryl alkynes. Alkynes couple with alkyl halides in the presence of Sml2/Sm. Alkynes react with hypervalent iodine compounds " and with reactive alkanes such as adamantane in the presence of AIBN. ... [Pg.561]

Over the last decade, the chemistry of the carbon-carbon triple bond has experienced a vigorous resurgence [1]. Whereas construction of alkyne-con-taining systems had previously been a laborious process, the advent of new synthetic methodology based on organotransition metal complexes has revolutionized the field [2]. Specifically, palladium-catalyzed cross-coupling reactions between alkyne sp-carbon atoms and sp -carbon atoms of arenes and alkenes have allowed for rapid assembly of relatively complex structures [3]. In particular, the preparation of alkyne-rich macrocycles, the subject of this report, has benefited enormously from these recent advances. For the purpose of this review, we Emit the discussion to cychc systems which contain benzene and acetylene moieties only, henceforth referred to as phenylacetylene and phenyldiacetylene macrocycles (PAMs and PDMs, respectively). Not only have a wide... [Pg.82]

Besides palladium catalysts, nickel was also found to be an effective catalyst for the Sonogashira reaction in aqueous media. Recently, Beletskaya et al. reported a Ni(PPh3)2Cl2/CuI-catalyzed Sonogashira coupling reaction of terminal acetylenes with aryl iodides in aqueous dioxane in high yields (Eq. 4.19).39... [Pg.109]

So far, no systematic work has been done on the use of recyclable, solid-phase catalysts in cross-coupling reactions. Most of the examples have been obtained for cross-couplings with either arylboronic acids or terminal acetylenes. It should be noted, however, that due care should be exercised when interpreting results on the cross-coupling of arylboronic acids with aryl iodides, as this extremely facile reaction can be catalyzed by practically any palladium-containing material, including trivial Pd black,481 e.g., as a sediment on the reaction vessel. Therefore, this reaction cannot serve as a reliable test for comparison between different catalytic systems. [Pg.357]

Synthesis of Functionalized Enynes by Palladium/Copper-catalyzed Coupling Reactions of Acetylenes with (Z)-2,3-Dibromopropenoic Acid Ethyl Ester (Z)-2-Bromo-5-(trimethylsilyl)-2-penten-4-ynoic Acid Ethyl Ester. [Pg.259]

A variety of triazole-based monophosphines (ClickPhos) 141 have been prepared via efficient 1,3-dipolar cycloaddition of readily available azides and acetylenes and their palladium complexes provided excellent yields in the amination reactions and Suzuki-Miyaura coupling reactions of unactivated aryl chlorides <06JOC3928>. A novel P,N-type ligand family (ClickPhine) is easily accessible using the Cu(I)-catalyzed azide-alkyne cycloaddition reaction and was tested in palladium-catalyzed allylic alkylation reactions <06OL3227>. Novel chiral ligands, (S)-(+)-l-substituted aryl-4-(l-phenyl) ethylformamido-5-amino-1,2,3-triazoles 142,... [Pg.229]

Bromoalkynes also couple with vinylstannanes readily to result in enynes. Synthesis of protected enynals via cross-coupling of vinylstannanes with 1-bromoalkynes in the presence of a catalytic amount of Pd(II) has been reported (equation 143)252. Hiyama and coworkers extended the Stille methodology for sequential three-component coupling of trimethylstannyl(trimethylsilyl)acetylene with a vinyl iodide in the first step and cross-coupling of the intermediate trimethylsilylethyne with another alkenyl iodide in the presence of tris(diethylamino)sulphonium trimethyldifluorosilicate in the second step to generate a dienyne (equation 144)253. Both steps occur under palladium catalysis, in one-pot, to result in stereodefined l,5-dien-3-ynes. [Pg.446]

The Fukuyama indole synthesis involving radical cyclization of 2-alkenylisocyanides was extended by the author to allow preparation of2,3-disubstituted derivatives <00S429>. In this process, radical cyclization of 2-isocyanocinnamate (119) yields the 2-stannylindole 120, which upon treatment with iodine is converted into the 2-iodoindole 121. These N-unprotected 2-iodoindoles can then undergo a variety of palladium-catalyzed coupling reactions such as reaction with terminal acetylenes, terminal olefins, carbonylation and Suzuki coupling with phenyl borate to furnish the corresponding 2,3-disubstituted indoles. [Pg.120]

Dipolar cycloaddition reaction of trimethylstannylacetylene with nitrile oxides yielded 3-substituted 5-(trimethylstannyl)isoxazoles 221. Similar reactions of (trimethylstannyl)phenylacetylene, l-(trimethylstannyl)-l-hexyne, and bis (trimethylsilyl)acetylene give the corresponding 3,5-disubstituted 4-(trimethyl-stannyl)isoxazoles 222, almost regioselectively (379). The 1,3-dipolar cycloaddition reaction of bis(tributylstannyl)acetylene with acetonitrile oxide, followed by treatment with aqueous ammonia in ethanol in a sealed tube, gives 3-methyl-4-(tributylstannyl)isoxazole 223. The palladium catalyzed cross coupling reaction of... [Pg.65]

Various intermolecular coupling reactions involving acetylene hydrocarbons have been reported to lead to vinylallenes. For example, 1-phenylpropyne (93), after activation with Hg(II) chloride, is first metalated by butyllithium treatment, then trans-metalated with zinc bromide and finally coupled with 1-iodo-l-phenylethene (94) in the presence of tetrakis(triphenylphosphine)palladium to provide the diphenylvinyl-allene 95 in moderate yield (Scheme 5.12) [31]. [Pg.196]

A convenient route for the preparation of yne-allenes was recently described by Saalfrank et al. [19]. Products 29a/b were formed by Stille cross-coupling of allenyl bromides 27a/b with alkynylstannanes such as 28 (Scheme 14.9). Allenyl phospho-nates such as 30 were also suitable substrates in palladium-catalyzed couplings with propargylstannane 31 (Eq. 14.1). Bisstannylated acetylene 33 as alkyne component furnished the expected yne-bisallene 34 in reasonable yield, but without any diaster-eoselectivity (meso-34 (R,R)-/(S,S)-34 =50 50) (Eq. 14.2). [Pg.851]

SYNTHESIS OF FUNCTIONALIZED ENYNES BY PALLADIUM/COPPER-CATALYZED COUPLING REACTIONS OF ACETYLENES WITH (Z)-2,3-DIBROMOPROPENOIC ACID ETHYL ESTER (Z)-2-BROMO-5-(TRIMETHYLSILYL)-2-PENTEN-4-YNOIC... [Pg.53]

S)-(-)-CITRONELLOL from geraniol. An asymmetrically catalyzed Diels-Alder reaction is used to prepare (1 R)-1,3,4-TRIMETHYL-3-C YCLOHEXENE-1 -CARBOXALDEHYDE with an (acyloxy)borane complex derived from L-(+)-tartaric acid as the catalyst. A high-yield procedure for the rearrangement of epoxides to carbonyl compounds catalyzed by METHYLALUMINUM BIS(4-BROMO-2,6-DI-tert-BUTYLPHENOXIDE) is demonstrated with a preparation of DIPHENYL-ACETALDEHYDE from stilbene oxide. A palladium/copper catalyst system is used to prepare (Z)-2-BROMO-5-(TRIMETHYLSILYL)-2-PENTEN-4-YNOIC ACID ETHYL ESTER. The coupling of vinyl and aryl halides with acetylenes is a powerful carbon-carbon bond-forming reaction, particularly valuable for the construction of such enyne systems. [Pg.147]

Aryl-acetylene synthesis, Cf. Cadiot-Chodkiewicz coupling and Sonogashira coupling. The Castro-Stephens coupling uses stoichiometric copper, whereas the Sonogashira variant uses catalytic palladium and copper. [Pg.112]


See other pages where Coupling acetylene, palladium is mentioned: [Pg.124]    [Pg.124]    [Pg.358]    [Pg.335]    [Pg.1]    [Pg.397]    [Pg.27]    [Pg.89]    [Pg.82]    [Pg.9]    [Pg.122]    [Pg.141]    [Pg.101]    [Pg.102]    [Pg.102]    [Pg.337]    [Pg.357]    [Pg.358]    [Pg.359]    [Pg.114]    [Pg.154]    [Pg.233]    [Pg.194]    [Pg.55]    [Pg.388]    [Pg.124]    [Pg.208]    [Pg.68]    [Pg.89]    [Pg.132]   
See also in sourсe #XX -- [ Pg.328 , Pg.471 , Pg.477 , Pg.613 ]




SEARCH



Palladium coupling

© 2024 chempedia.info