Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coupled-cluster theory functions

Analogously to MP methods, coupled cluster theory may also be based on a UFIF reference wave function. The resulting UCC methods again suffer from spin contamination of the underlying UHF, but the infinite nature of coupled cluster methods is substantially better at reducing spin contamination relative to UMP. Projection methods analogous to those of the PUMP case have been considered but are not commonly used. ROHF based coupled cluster methods have also been proposed, but appear to give results very similar to UCC, especially at the CCSD(T) level. [Pg.139]

For our purposes, CC theory and its finite order MBPT approximations offer a convenient, compact description of the correlation problem and give rapid convergence to the basis set (i.e. full Cl) limit with different categories of correlation operators (see Fig. 15.1). The coupled-cluster wave function is... [Pg.277]

Static charge-density susceptibilities have been computed ab initio by Li et al (38). The frequency-dependent susceptibility x(r, r cd) can be calculated within density functional theory, using methods developed by Ando (39 Zang-will and Soven (40 Gross and Kohn (4I and van Gisbergen, Snijders, and Baerends (42). In ab initio work, x(r, r co) can be determined by use of time-dependent perturbation techniques, pseudo-state methods (43-49), quantum Monte Carlo calculations (50-52), or by explicit construction of the linear response function in coupled cluster theory (53). Then the imaginary-frequency susceptibility can be obtained by analytic continuation from the susceptibility at real frequencies, or by a direct replacement co ico, where possible (for example, in pseudo-state expressions). [Pg.172]

Use of Equation (1) in numerical work requires a means of generating x(r, r i(o) as well as the average charge density. Direct variational methods are not applicable to the expression for E itself, due to use of the virial theorem. However, both pc(r) and x(r, r ico) (39-42, 109-112) are computable with density-functional methods, thus permitting individual computations of E from Eq. (1) and investigations of the effects of various approximations for x(r, r ico). Within coupled-cluster theory, x(r, r ico) can be generated directly (53) from the definition in Eq. (3) then Eq. (1) yields the coupled-cluster energy in a new form, as an expectation value. [Pg.179]

In addition to the encouraging numerical results, the canonical transformation theory has a number of appealing formal features. It is based on a unitary exponential and is therefore a Hermitian theory it is size-consistent and it has a cost comparable to that of single-reference coupled-cluster theory. Cumulants are used in two places in the theory to close the commutator expansion of the unitary exponential, and to decouple the complexity of the multireference wave-function from the treatment of dynamic correlation. [Pg.380]

Most of the models described above have also been implemented at correlated levels of tlieory, including perturbation theory. Cl, and coupled-cluster theory (of course, the DFT SCRF process is correlated by construction of the functional). Unsurprisingly, if a molecule is subject to large correlation effects, so too is the electrostatic component of its solvation free energy. [Pg.401]

T. Korona, B. Jeziorski, One-electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory. [Pg.398]

The second general approach to correlation theory, also based on perturbation theory, is the coupled-cluster method, which can be thought of as an infinite-order perturbation method. The coupled-cluster wave function T cc is expressed as a power series,... [Pg.218]

The SAC/SAC-CI method is a correlated electronic-structure theory for the ground and excited states in various spin multiplicities. The SAC method belongs to the coupled-cluster theory [30, 31]. In the case of a closed-shell singlet state, the SAC wave function is written as... [Pg.95]

Till recently, computations of vibronic spectra have been limited to small systems or approximated approaches, mainly as a consequence of the difficulties to obtain accurate descriptions of excited electronic states of polyatomic molecules and to computational cost of full dimensional vibronic treatment. Recent developments in electronic structure theory for excited states within the time-dependent density functional theory (TD-DFT) and resolution-of-the-identity approximation of coupled cluster theory (R1-CC2) and in effective approaches to simulate electronic spectra have paved the route toward the simulation of spectra for significantly larger systems. [Pg.134]

Tel. 904-392-1597, fax. 904-392-8722, e-mail aces2 qtp.ufl.edu Ab initio molecular orbital code specializing in the evaluation of the correlation energy using many-body perturbation theory and coupled-cluster theory. Analytic gradients of the energy available at MBPT(2), MBPT(3), MBPT(4), and CC levels for restricted and unrestricted Hartree-Fock reference functions. MBPT(2) and CC gradients. Also available for ROHE reference functions. UNIX workstations. [Pg.416]

Disconnected, in coupled cluster theory, 133 Exchange integral, 61, 67 General contraction of basis sets, 157 Hindered rotor, partition function for, 306... [Pg.220]

In volume 1 of this series, I compared the use of second-order many-body perturbation theory in its MP2 form with that of density functional theory and coupled cluster theory. I recorded how the number of hits in a literature search on the string MP2 rises from 3 in 1989 to 854 in 1998. The corresponding results for DFT, the most widely used semi-empirical method, are 7 in 1989 growing to 733 by 1998. By 1998, the number of hits recorded for CCSD stood as 244. [Pg.234]

In this section we examine some of the critical ideas that contribute to most wavefunction-based models of electron correlation, including coupled cluster, configuration interaction, and many-body perturbation theory. We begin with the concept of the cluster function which may be used to include the effects of electron correlation in the wavefunction. Using a formalism in which the cluster functions are constructed by cluster operators acting on a reference determinant, we justify the use of the exponential ansatz of coupled cluster theory. ... [Pg.35]

The exponential ansatz given in Eq. [31] is one of the central equations of coupled cluster theory. The exponentiated cluster operator, T, when applied to the reference determinant, produces a new wavefunction containing cluster functions, each of which correlates the motion of electrons within specific orbitals. If T includes contributions from all possible orbital groupings for the N-electron system (that is, T, T2, . , T ), then the exact wavefunction within the given one-electron basis may be obtained from the reference function. The cluster operators, T , are frequently referred to as excitation operators, since the determinants they produce from fl>o resemble excited states in Hartree-Fock theory. Truncation of the cluster operator at specific substi-tution/excitation levels leads to a hierarchy of coupled cluster techniques (e.g., T = Ti + f 2 CCSD T T + T2 + —> CCSDT, etc., where S, D, and... [Pg.42]

P.. Knowles, C. Hampel, and H.-. Werner,/. Chem. Phys., 99, 5219 (1993). Coupled-Cluster Theory for High-Spin, Open-Shell Reference Wave Functions. [Pg.126]


See other pages where Coupled-cluster theory functions is mentioned: [Pg.136]    [Pg.139]    [Pg.201]    [Pg.2]    [Pg.113]    [Pg.220]    [Pg.318]    [Pg.164]    [Pg.172]    [Pg.230]    [Pg.104]    [Pg.55]    [Pg.75]    [Pg.17]    [Pg.366]    [Pg.237]    [Pg.574]    [Pg.178]    [Pg.377]    [Pg.468]    [Pg.818]    [Pg.212]    [Pg.1152]    [Pg.1176]    [Pg.3813]    [Pg.77]    [Pg.108]    [Pg.219]    [Pg.34]    [Pg.115]    [Pg.124]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Cluster coupled

Cluster function

Coupled clustered theory

Coupled-cluster theory

Coupled-cluster theory ground-state wave function

Coupling theory

Couplings functions

© 2024 chempedia.info