Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Counterelectrodes

Instrumentation Controlled-current coulometry normally is carried out using a galvanostat and an electrochemical cell consisting of a working electrode and a counterelectrode. The working electrode, which often is constructed from Pt, is also... [Pg.500]

External counterelectrode layers of manganese dioxide graphite, and silver... [Pg.330]

The potential dependence of the velocity of an electrochemical phase boundary reaction is represented by a current-potential curve I(U). It is convenient to relate such curves to the geometric electrode surface area S, i.e., to present them as current-density-potential curves J(U). The determination of such curves is represented schematically in Fig. 2-3. A current is conducted to the counterelectrode Ej in the electrolyte by means of an external circuit (voltage source Uq, ammeter, resistances R and R") and via the electrode E, to be measured, back to the external circuit. In the diagram, the current indicated (0) is positive. The potential of E, is measured with a high-resistance voltmeter as the voltage difference of electrodes El and E2. To accomplish this, the reference electrode, E2, must be equipped with a Haber-Luggin capillary whose probe end must be brought as close as possible to... [Pg.40]

The anode compartment contains a reference electrode and counterelectrode and by means of a potentiostat the anode side is maintained at a constant potential. The coverage of adsorbed hydrogen on the cathode side will depend on the current density i and the nature of the electrolyte solution, and the cell can be used to study the effect of a variety of factors (composition and structure of alloys, pH of solution, effect of promoters and inhibitors) on hydrogen permeation. [Pg.1211]

The reason for this limited cycle life is the high solubility of the zinc electrode in alkaline electrolyte the zincate ions formed are deposited again during the subsequent charging in the form of dendrites, i.e., of fernlike crystals. They grow in the direction of the counterelectrode and finally cause shorts. [Pg.285]

The experimental setup is shown in Figure 9.23. The Pt-black catalyst film also served as the working electrode in a Nafion 117 solid polymer electrolyte cell. The Pt-covered side of the Nafion 117 membrane was exposed to the flowing H2-02 mixture and the other side was in contact with a 0.1 M KOH aqueous solution with an immersed Pt counterelectrode. The Pt catalyst-working electrode potential, Urhe (=Uwr)> was measured with respect to a reversible reference H2 electrode (RHE) via a Luggin capillary in contact with the Pt-free side of the Nafion membrane. [Pg.456]

A voltage difference with respect to a lithium counterelectrode of > 2 V... [Pg.462]

Figure 19. Scheme describing the redox switch, which is based on a viologen redox center incorporated within the nanoclusters ligand shell. For simplification the counterelectrode is not shown. (Adapted with permission from Ref [34], 2000, Nature Publishing Group.)... [Pg.118]

A standard rotating disk electrode (RDE) setup with a gas-tight Pyrex cell was used for the experiment on CO adsorption and the HOR. A Pt wire was used as counterelectrode. A reversible hydrogen electrode, RHE(t), kept at the same temperature as that of the cell (t, in °C), was used as the reference. All the electrode potentials in this chapter will be referenced to RHE(f). The electrolyte solution of 0.1 M HCIO4... [Pg.318]

Despite the potential impact of novel photosynthetic routes based on these developments, the most ambitious application remains in the conversion of solar energy into electricity. Dvorak et al. showed that photocurrent as well as photopotential response can be developed across liquid-liquid junctions during photoinduced ET reactions [157,158]. The first analysis of the output power of a porphyrin-sensitized water-DCE interface has been recently reported [87]. Characteristic photocurrent-photovoltage curves for this junction connected in series to an external load are displayed in Fig. 22. It should be mentioned that negligible photoresponses are observed when only the platinum counterelectrodes are illuminated. Considering irradiation AM 1, solar energy conversions from 0.01 to 0.1% have been estimated, with fill factors around 0.4. The low conversion... [Pg.227]

Two aqueous phases separated by a liquid membrane, EM, of nitrobenzene, NB, were layered in a glass tube, which was equipped with Pt counterelectrodes in W1 and W2 and reference electrodes in three phases as in Eq. (1). Reference electrodes set in W1 and W2 were Ag/AgCl electrodes, SSE, and those in LM were two tetraphenylborate ion selective electrodes [26,27], TPhBE, of liquid membrane type. The membrane current, /wi-w2 was applied using two Pt electrodes. The membrane potential, AFwi-wi recorded as the potential of SSE in W2 vs. that in W1. When a constant current of 25 /aA cm was applied from W1 to W2 in the cell given as Eq. (1), the oscillation of membrane potential was observed as shown in curve 1 of Fig. 1. The oscillation of AFwi-wi continued for 40 to 60 min, and finally settled at ca. —0.40 V. [Pg.610]

Obviously, the ohmic potential difference does not depend on the distance of the counterelectrode (if, of course, this is sufficiently apart) being situated mainly in the neighbourhood of the ultramicroelectrode. At constant current density it is proportional to its radius. Thus, with decreasing the radius of the electrode the ohmic potential decreases which is one of the main advantages of the ultramicroelectrode, as it makes possible its use in media of rather low conductivity, as, for example, in low permittivity solvents and at very low temperatures. This property is not restricted to spherical electrodes but also other electrodes with a small characteristic dimension like microdisk electrodes behave in the same way. [Pg.303]

The photovoltaic effect is initiated by light absorption in the electrode material. This is practically important only with semiconductor electrodes, where the photogenerated, excited electrons or holes may, under certain conditions, react with electrolyte redox systems. The photoredox reaction at the illuminated semiconductor thus drives the complementary (dark) reaction at the counterelectrode, which again may (but need not) regenerate the reactant consumed at the photoelectrode. The regenerative mode of operation is, according to the IUPAC recommendation, denoted as photovoltaic cell and the second one as photoelectrolytic cell . Alternative classification and terms will be discussed below. [Pg.402]

The photopontential also approaches to zero when the semiconductor photoelectrode is short-circuited to a metal counterelectrode at which a fast reaction (injection of the majority carriers into the electrolyte) takes place. The corresponding photocurrent density is defined as a difference between the current densities under illumination, /light and in the dark, jDARK ... [Pg.412]

The potential which controls the photoelectrochemical reaction is generally not the photopotential defined by Eqs (5.10.20) and (5.10.21) (except for the very special case where the values of v, REdox and the initial Fermi energy of the counterelectrode are equal). The energy which drives the photoelectrochemical reaction, eR can be expressed, for example, for an n-semiconductor electrode as... [Pg.413]

Manganese dioxide (brownstone or pyrolusite) is used in dry batteries as an oxidizing agent for zinc (as counterelectrode). [Pg.46]

In limiting-current measurements, the counterelectrode is sometimes used as a reference electrode. In that case, the surface overpotential of the counterelectrode contributes to the recorded overpotential that is, the potential of the reference electrode is now current dependent. Unless precautions are taken (e.g., the area of the counterelectrode is much larger than that of the working electrode), a properly defined limiting-current plateau may not be obtained. [Pg.227]

Alternatively, one may control the electrode potential and monitor the current. This potentiodynamic approach is relatively easy to accomplish by use of a constant-voltage source if the counterelectrode also functions as the reference electrode. As indicated in the previous section, this may lead to various undesirable effects if a sizable ohmic potential drop exists between the electrodes, or if the overpotential of the counterelectrode is strongly dependent on current. The potential of the working electrode can be controlled instead with respect to a separate reference electrode by using a potentiostat. The electrode potential may be varied in small increments or continuously. It is also possible to impose the limiting-current condition instantaneously by applying a potential step. [Pg.229]

In work by Okada et al. (03) on a rotating-disk flow, Eqs. (10a) and (10b) in Table VII, the electrolyte was completely enclosed between the rotating disk and the counterelectrode. Mass transfer was measured at the rotating as well as at the stationary disk, and the distance between disks was varied. At low rotation rates, the flux at the rotating disk was higher than predicted by the Levich equation, Eq. (la) in Table VII. The flux at the stationary disk followed a relation of the Levich type, but with a constant roughly two-thirds that in the rotating-disk equation. [Pg.274]

Platinum-loaded Ti02 systems can be considered as a short-circuited photo-electrochemical cell where the Ti02 semiconductor electrode and metal Pt counterelectrode are brought into contact [159]. Light irradiation can induce electron-hole (e -h +) pair formation and surface oxidation and also reduction reactions on each Pt/Ti02 particle (Figure 4.11). These powder-based systems lack the advantage of... [Pg.109]


See other pages where Counterelectrodes is mentioned: [Pg.1686]    [Pg.2720]    [Pg.501]    [Pg.505]    [Pg.473]    [Pg.336]    [Pg.336]    [Pg.336]    [Pg.169]    [Pg.1211]    [Pg.344]    [Pg.404]    [Pg.70]    [Pg.82]    [Pg.93]    [Pg.114]    [Pg.193]    [Pg.215]    [Pg.431]    [Pg.432]    [Pg.631]    [Pg.740]    [Pg.402]    [Pg.403]    [Pg.414]    [Pg.222]    [Pg.246]    [Pg.267]    [Pg.235]    [Pg.235]   
See also in sourсe #XX -- [ Pg.103 ]

See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Counterelectrode

© 2024 chempedia.info