Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper hydrogen chloride

Copper hydrogen chloride o-Nitranilines from benzofurazan oxides... [Pg.400]

However, hydrogen chloride gas, obtained as a by-product in chlorination reactions, is commercially converted to chlorine by passing the hydrogen chloride mixed with air over a copper catalyst at a temperature of 600-670K when the following reaction occurs ... [Pg.266]

By the oxidation of hydrogen chloride. A mixture of hydrogen chloride with air or oxygen is passed over a catalyst of copper(II)... [Pg.317]

Thiazole acid chlorides react with diazomethane to give the diazoketone. The later reacts with alcoholic hydrogen chloride to give chloroacetylthiazole (Scheme 16). However, the Wolff rearrangement of the diazoketone is not consistently satisfactory (82). Heated with alcohol in the presence of copper oxide the 5-diazomethylketone (24) gives ethyl 5-thiazoleacetate (25) instead of the expected ethoxymethyl 5-thiazolyl ketone (Scheme 17) (83). [Pg.529]

Benzene Oxychlorin tion. In the benzene oxychlorination process, also known as the Raschig Hooker process, benzene is oxychlorinated with hydrogen chloride, air, and with the presence of iron and copper chloride catalyst to form chlorobenzene. The reaction occurs at 200—260°C and atmospheric pressure. The chlorobenzene is hydrolyzed at 480°C in the presence of a suitable catalyst to produce phenol and chloride. The yield of phenol is - 90 mol% of theoretical. These plants have been shut down for environmental and economic reasons. [Pg.289]

Dkect synthesis is the preparative method that ultimately accounts for most of the commercial siUcon hydride production. This is the synthesis of halosilanes by the dkect reaction of a halogen or haUde with siUcon metal, siUcon dioxide, siUcon carbide, or metal sihcide without an intervening chemical step or reagent. Trichlorosilane is produced by the reaction of hydrogen chloride and siUcon, ferrosiUcon, or calcium sihcide with or without a copper catalyst (82,83). Standard purity is produced in a static bed at 400—900°C. [Pg.23]

Oxychlorination of Ethylene to Dichloroethane. Ethylene (qv) is converted to dichloroethane in very high yield in fixed-bed, multitubular reactors and fluid-bed reactors by reaction with oxygen and hydrogen chloride over potassium-promoted copper(II) chloride supported on high surface area, porous alumina (84) ... [Pg.203]

Dehydrochlorination of 1,1,2-trichloroethane at 500°C in the presence of a copper catalyst gives a different product, ie, cis- and /n7 j -l,2-dichloroethylene. Addition of small amounts of a chlorinating agent, such as chlorine, promotes radical dehydrochlorination in the gas phase through a disproportionation mechanism that results in loss of hydrogen chloride and formation of a double bond. The dehydrochlorination of 1,2-dichloroethane in the presence of chlorine, as shown in equations 19 and 20, is a typical example. [Pg.509]

Continuous chlorination of benzene at 30—50°C in the presence of a Lewis acid typically yields 85% monochlorobenzene. Temperatures in the range of 150—190°C favor production of the dichlorobenzene products. The para isomer is produced in a ratio of 2—3 to 1 of the ortho isomer. Other methods of aromatic ring chlorination include use of a mixture of hydrogen chloride and air in the presence of a copper—salt catalyst, or sulfuryl chloride in the presence of aluminum chloride at ambient temperatures. Free-radical chlorination of toluene successively yields benzyl chloride, benzal chloride, and benzotrichloride. Related chlorination agents include sulfuryl chloride, tert-huty hypochlorite, and /V-ch1orosuccinimide which yield benzyl chloride under the influence of light, heat, or radical initiators. [Pg.510]

Significant quantities of ethyl chloride are also produced as a by-product of the catalytic hydrochlorination over a copper chloride catalyst, of ethylene and hydrogen chloride to produce 1,2-dichloroethane, which is used as feedstock in the manufacture of vinyl choride (see Vinyl polymers). This ethyl chloride can be recovered for sale or it can be concentrated and catalyticaHy cracked back to ethylene and hydrogen chloride (25). As the market for ethyl chloride declines, recovery as an intermediate by-product of vinyl chloride manufacture may become a predominant method of manufacture of ethyl chloride. [Pg.2]

Oxychl orin ation of ethylene has become the second important process for 1,2-dichloroethane. The process is usually incorporated into an integrated vinyl chloride plant in which hydrogen chloride, recovered from the dehydrochlorination or cracking of 1,2-dichloroethane to vinyl chloride, is recycled to an oxychl orin a tion unit. The hydrogen chloride by-product is used as the chlorine source in the chlorination of ethylene in the presence of oxygen and copper chloride catalyst ... [Pg.8]

Cupric chloride or copper(II) chloride [7447-39 ], CUCI2, is usually prepared by dehydration of the dihydrate at 120°C. The anhydrous product is a dehquescent, monoclinic yellow crystal that forms the blue-green orthohombic, bipyramidal dihydrate in moist air. Both products are available commercially. The dihydrate can be prepared by reaction of copper carbonate, hydroxide, or oxide and hydrochloric acid followed by crystallization. The commercial preparation uses a tower packed with copper. An aqueous solution of copper(II) chloride is circulated through the tower and chlorine gas is sparged into the bottom of the tower to effect oxidation of the copper metal. Hydrochloric acid or hydrogen chloride is used to prevent hydrolysis of the copper(II) (11,12). Copper(II) chloride is very soluble in water and soluble in methanol, ethanol, and acetone. [Pg.253]

Bromo-2 -(3"-dimethylaminopropyl)-amino4 potassium carbonate (5 g) and copper powder (0.4 g). It is then heated under reflux for 4B hours, cooled, and the insoluble matter filtered off. After washing with dimethylformamide (20 cc), the filtrate is taken up in distilled water (200 cc). The base formed is extracted with ether (3 times with 50 cc), the ethereal solution is dried over sodium sulfate, the ether driven off on a water-bath and the residue distilled. In this way there is obtained 3ethereal hydrogen chloride on the base dissolved in acetone this hydrochloride melts at 180°C. [Pg.321]

Octanal has been prepared by the reduction of caprylonitrile with hydrogen chloride and stannous chloride,2 by the passage of a mixture of caprylic acid and formic acid over titanium dioxide3 or manganous oxide,4 by dehydrogenation of 1-octanol over copper,6 and by oxidation of 1-octanol.6... [Pg.97]

The first one-third of this tube may be filled with anhydrous copper sulphate to remove any hydrogen sulphide or hydrogen chloride present from sulphides or chlorides in the limestone. [Pg.478]

The reaction of crotonaldehyde and methyl vinyl ketone with thiophenol in the presence of anhydrous hydrogen chloride effects conjugate addition of thiophenol as well as acetal formation. The resulting j3-phenylthio thioacetals are converted to 1-phenylthio-and 2-phenylthio-1,3-butadiene, respectively, upon reaction with 2 equivalents of copper(I) trifluoromethanesulfonate (Table I). The copper(I)-induced heterolysis of carbon-sulfur bonds has also been used to effect pinacol-type rearrangements of bis(phenyl-thio)methyl carbinols. Thus the addition of bis(phenyl-thio)methyllithium to ketones and aldehydes followed by copper(I)-induced rearrangement results in a one-carbon ring expansion or chain-insertion transformation which gives a-phenylthio ketones. Monothioketals of 1,4-diketones are cyclized to 2,5-disubstituted furans by the action of copper(I) trifluoromethanesulfonate. ... [Pg.106]

C03-0108. What species are present in solution when the following compounds dissolve in water (a) sodium dichromate (b) copper(II) chloride (c) barium hydroxide (d) methanol (e) sodium hydrogen carbonate and (f) iron(III) nitrate. [Pg.193]

In this cell, the following independent phases must be considered platinum, silver, gaseous hydrogen, solid silver chloride electrolyte, and an aqueous solution of hydrogen chloride. In order to be able to determine the EMF of the cell, the leads must be made of the same material and thus, to simplify matters, a platinum lead must be connected to the silver electrode. It will be seen in the conclusion to this section that the electromotive force of a cell does not depend on the material from which the leads are made, so that the whole derivation could be carried out with different, e.g. copper, leads. In addition to Cl- and H30+ ions (further written as H+), the solution also contains Ag+ ions in a small concentration corresponding to a saturated solution of silver chloride in hydrochloric acid. Thus, the following scheme of the phases can be written (the parentheses enclose the species present in the given phase) ... [Pg.172]

Write the formula for each of the following compounds (a) hydrogen iodide, (b) calcium chloride, (c) lithium oxide, (d) silver nitrate, (e) iron(II) sulfide, (/) aluminum chloride, (g) ammonium sulfate, (h) zinc carbonate, (/) iron(lll) oxide, ( ) sodium phosphate, (k) iron(H) acetate, (/) ammonium cyanide, and (m) copper(II) chloride. [Pg.110]

In a printed circuit board etching line using copper(II) chloride solution, 45 wt% hydrogen peroxide solution was used to recover the copper salts. The peroxide header tank became contaminated with trace amounts of the etching solution, and catalytic decomposition of the peroxide led to a pressure burst of the tank. [Pg.1632]

Airco A modification of the Deacon process for oxidizing hydrogen chloride to chlorine. The copper catalyst is modified with lanthanides and used in a reversing flow reactor without the need for external heat. Developed by the Air Reduction Company from the late 1930s. U.S. Patents 2,204,172 2,312,952 2,271,056 2,447,834. [Pg.14]

Oxyhydrochlorination A two-stage process for making gasoline from lower paraffinic hydrocarbons, especially methane. The methane, mixed with oxygen and hydrogen chloride, is passed over a supported copper chloride catalyst, yielding a mixture of chloromethanes ... [Pg.200]

Shell Deacon An improved version of the Deacon process for oxidizing hydrogen chloride to chlorine, using a catalyst containing the mixed chlorides of copper, potassium, and rare earths. Formerly operated in The Netherlands and still in operation in India. [Pg.242]

Anhydrous copper(II) sulfate, 7 773 Anhydrous ethanol, production by azeotropic extraction, 8 809, 817 Anhydrous gaseous hydrogen sulfide, 23 633 Anhydrous hydrazine, 13 562, 585 acid-base reactions of, 13 567-568 explosive limits of, 13 566t formation of, 13 579 vapor pressures of, 13 564 Anhydrous hydrogen chloride, 13 809-813 physical and thermodynamic properties of, 13 809-813 purification of, 13 824-825 reactions of, 13 818-821 uses for, 13 833-834... [Pg.56]


See other pages where Copper hydrogen chloride is mentioned: [Pg.19]    [Pg.163]    [Pg.218]    [Pg.219]    [Pg.446]    [Pg.255]    [Pg.27]    [Pg.515]    [Pg.524]    [Pg.530]    [Pg.54]    [Pg.313]    [Pg.321]    [Pg.899]    [Pg.704]    [Pg.17]    [Pg.269]    [Pg.274]    [Pg.288]    [Pg.571]    [Pg.922]    [Pg.959]    [Pg.362]    [Pg.562]    [Pg.390]    [Pg.195]   
See also in sourсe #XX -- [ Pg.58 , Pg.59 ]




SEARCH



Copper chloride

© 2024 chempedia.info