Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper electron exchange reaction

Recently, other authors when studying the activation of hydrogen by nickel and nickel-copper catalysts in the hydrogen-deuterium exchange reaction concentrated for example only on the role of nickel in these alloys (56) or on a correlation between the true nickel concentration in the surface layer of an alloy, as stated by the Auger electron spectroscopy, and the catalytic activity (57). [Pg.273]

The NO/NO+ and NO/NO- self-exchange rates are quite slow (42). Therefore, the kinetics of nitric oxide electron transfer reactions are strongly affected by transition metal complexes, particularly by those that are labile and redox active which can serve to promote these reactions. Although iron is the most important metal target for nitric oxide in mammalian biology, other metal centers might also react with NO. For example, both cobalt (in the form of cobalamin) (43,44) and copper (in the form of different types of copper proteins) (45) have been identified as potential NO targets. In addition, a substantial fraction of the bacterial nitrite reductases (which catalyze reduction of NO2 to NO) are copper enzymes (46). The interactions of NO with such metal centers continue to be rich for further exploration. [Pg.220]

In these redox reactions, there is a simultaneous loss and gain of electrons. In the oxidation reaction part of the reaction (oxidation half-reaction), electrons are being lost, but in the reduction half-reaction, those very same electrons are being gained. Therefore, in redox reactions there is an exchange of electrons, as reactants become products. This electron exchange may be direct, as when copper metal plates out on a piece of zinc or it may be indirect, as in an electrochemical cell (battery). [Pg.56]

Copper iodide acts as an efficient reagent for the nucleophilic displacement of 1-haloalkynes. It transforms 1-bromoalkynes (72) into 1-iodoalkynes (73) which, on further treatment with copper(II) bis(arenesulfinate), are converted into the corresponding alkynyl aryl sulfones (74). An electron transfer between 1-haloalkynes and copper(I) salts is believed to take place for the copper-assisted halogen-exchange reaction at the acetylenic carbon atom. [Pg.176]

The simultaneous formation of some C08+ by association with surface copper ions, as in the case of ZnO, is not of course excluded, but this complex can play no part in the oxygen exchanges, although it may effect the calorimetric measurements of Garner et al. (7). As with ZnO, a small increase in temperature will promote the separation of two of the electrons from the complex on the R.H.S. of the first equation leading to reduction of the oxide surface this reduction occurs to a small extent at especially favored sites even at exchange reaction temperatures. [Pg.221]

Much more research has been carried out with polymers in which the coordinated metal atom is part of the chain backbone. Typically, the metal atoms are copper, nickel, and cobalt. Oxygen atoms or carbon atoms adjacent to the metal atom provide the electrons required for the coordinate bond.30 Polymers of this type are often rather intractable, for a variety of reasons. Specifically, insolubility can be a problem for species with moderate molecular weights. Also, coordination between chains can cause aggregation, and ligand-exchange reactions with small molecules such as solvents can cause chain scission. However, in some favorable cases, the intramolecular coordination is sufficiently strong for the polymer to be processed by the usual techniques such as spinning into fibers or extrusion into films.30... [Pg.286]

Since the corrosion of iron in copper sulfate solution involves an oxidation and reduction reactions with exchange of electrons, the reaction must involve an electrochemical potential difference, related to the equilibrium constant. This relationship may be written as ... [Pg.21]

The CV curves obtained for carbons with preadsorbed copper shown in Figs. 45 (curves b, b, c, c ) and 46 (a-a")) exhibit only slight peaks of the Cu(II)/Cu(I) couple and broad waves due to the redox reaction of surface carbon functionalities (.see Section IV). However, preadsorbed copper enhances the peaks of the redox process in bulk solution (especially the anodic peaks for D—H and D—Ox samples), as can be seen in Fig. 46 (curves c-c"). The low electrochemical activity of samples with preadsorbed copper species observed in neutral solution is the result of partial desorption (ion exchange with Na ) of copper as well as the formation of an imperfect metalic layer (microcrystallites). Deactivation of the carbon electrode as a result of spontaneous reduction of metal ions (silver) was observed earlier [279,280]. The increase in anodic peaks for D—H and D—Ox modified samples with preadsorbed copper suggests that in spite of electrochemical inactivity, the surface copper species facilitate electron transfer reactions between the carbon electrode and the ionic form at the electrode-solution interface. The fact that the electrochemical activity of the D—N sample is lowest indicates the formation of strong complexes between ad.sorbed cations and surface nitrogen-containing functionalities (similar to porphyrin) [281]. Between —0.35 V and -1-0.80 V, copper (II) in the porphyrin complex (carbon electrode modifier) is not reduced, so there can be no reoxidation peak of copper (0) [281]. [Pg.205]

It is known that during the immersion of PS into the CUSO4 + HF bath, oxidation-reduction reactions between copper ions and silicon atoms from the silicon skeleton of the PS layer can occur [2,4]. This is conditioned by the high redox potential of Cu ions. Copper ions are reduced and Cu deposited via the electron exchange with silicon which is oxidized and dissolved in the fluoride-containing solution. The most important observation from this study for PS of 55% porosity is the crystalline structure of the deposited Cu grains very well faceted Cu crystals are formed at the PS surface and small Cu crystals are within the pore channels. [Pg.417]

Redox proteins are relatively small molecules. In biological systems they are membrane associated, mobile (soluble) or associated with other proteins. Their molecular structure ensures specific interactions with other proteins or enzymes. In a simplified way this situation is mimicked when electrodes are chemically modified to substitute one of the reaction partners of biological redox pairs. The major classes of soluble redox active proteins are heme proteins, ferredoxins, flavoproteins and copper proteins (Table 2.1). In most cases they do not catalyze specific chemical reactions themselves, but function as biological (natural) electron carriers to or between enzymes catalyzing specific transformations. Also some proteins which are naturally not involved in redox processes but carry redox active sites (e.g., hemoglobin and myoglobin) show reversible electron exchange at proper functionalized electrodes. [Pg.273]

Mechanistic interpretations of the copper-catalyzed aromatic nucleophilic substitution reactions remain unsettled even after half-a-century of debate [19, 20]. Possible pathways involve an S Ar reaction mediated by copper complexation to the pi-system (Scheme 4a), an electron transfer reaction followed by halide dissociation (Scheme 4b), four-centered c-bond metathesis reaction (Scheme 4c) and Cu(l) oxidative addition to the Ar-X bond, followed by the nucleophile exchange and reductive elimination in the resulting Cu(lll) system (Scheme 4d). There is presently a considerable body of experimental and theoretical data for and against each of the proposed mechanisms [21]. While the mechanistic studies were mostly related to the formation of C-C, C-O and C-N bonds, it is likely that the copper-catalyzed halogen exchange reactions follow a similar trend. [Pg.22]

A mechanism involving the polarization of the ascorbate ligand by a Cu(II) central ion was proposed (138), though the involvement of Cu(I) cannot be ruled out (139). All these reactions proceed via the inner-sphere mechanism however, the copper-catalyzed reduction of superoxide boimd to a binuclear cobalt(III) complex by 2-aminoethanethiol proceeds via the outer-sphere mechanism (140). This is attributed to the effect of 2-aminoethanethiol as a hgand on the rate constant of the Cu(ll/1) electron self-exchange reaction which is suggested to proceed via the gated mechanism. [Pg.249]


See other pages where Copper electron exchange reaction is mentioned: [Pg.47]    [Pg.302]    [Pg.297]    [Pg.321]    [Pg.128]    [Pg.253]    [Pg.234]    [Pg.72]    [Pg.242]    [Pg.49]    [Pg.75]    [Pg.49]    [Pg.710]    [Pg.645]    [Pg.388]    [Pg.261]    [Pg.394]    [Pg.502]    [Pg.28]    [Pg.223]    [Pg.138]    [Pg.1035]    [Pg.3673]    [Pg.49]    [Pg.316]    [Pg.82]    [Pg.388]    [Pg.710]    [Pg.261]    [Pg.261]    [Pg.1034]    [Pg.3672]    [Pg.1034]    [Pg.21]    [Pg.219]    [Pg.349]    [Pg.580]   


SEARCH



Electron exchange

Electron exchange reaction

Electronic exchanges

© 2024 chempedia.info