Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper cubic

Figure 6.1 The crystal structures of the metallic elements. Note unit cell parameters are in nanometres. The figure given for cubic structures is Oq, A1 = copper (cubic close-packed) structure A2 = tungsten (body-centred cubic) structure A3 = magnesium (hexagonal close-packed) structure... Figure 6.1 The crystal structures of the metallic elements. Note unit cell parameters are in nanometres. The figure given for cubic structures is Oq, A1 = copper (cubic close-packed) structure A2 = tungsten (body-centred cubic) structure A3 = magnesium (hexagonal close-packed) structure...
The FCC structure is illustrated in figure Al.3.2. Metallic elements such as calcium, nickel, and copper fonu in the FCC structure, as well as some of the inert gases. The conventional unit cell of the FCC structure is cubic with the lengdi of the edge given by the lattice parameter, a. There are four atoms in the conventional cell. In the primitive unit cell, there is only one atom. This atom coincides with the lattice pomts. The lattice vectors for the primitive cell are given by... [Pg.98]

Copper Oxides. Coppet(I) oxide [1317-39-17 is a cubic or octahedral naturally occurring mineral known as cuprite [1308-76-5]. It is ted or reddish brown in color. Commercially prepared coppet(I) oxides vary in color from yellow to orange to ted to purple as particle size increases. Usually coppet(I) oxide is prepared by pytometaHutgical methods. It is prepared by heating copper powder in air above 1030°C or by blending coppet(II) oxide with carbon and heating to 750°C in an inert atmosphere. A particularly air-stable coppet(I) oxide is produced when a stoichiometric blend of coppet(II) oxide and copper powder ate heated to 800—900°C in the absence of oxygen. Lower temperatures can be used if ammonia is added to the gas stream (27-29). [Pg.254]

Coppet(II) oxide [1317-38-0] CuO, is found in nature as the black triclinic tenorite [1317-92-6] or the cubic or tetrahedral paramelaconite [71276-37 ]. Commercially available copper(II) oxide is generally black and dense although a brown material of low bulk density can be prepared by decomposition of the carbonate or hydroxide at around 300°C, or by the hydrolysis of hot copper salt solutions with sodium hydroxide. The black product of commerce is most often prepared by evaporation of Cu(NH2)4C02 solutions (35) or by precipitation of copper(II) oxide from hot ammonia solutions by addition of sodium hydroxide. An extremely fine (10—20 nm) copper(II) oxide has been prepared for use as a precursor in superconductors (36). [Pg.254]

Crystalline copper and magnesium have face-centred-cubic and close-packed-hexagonal structures respectively. [Pg.276]

The most important evaluation of an ANG storage systems performance is the measurement of the amount of usable gas which can be delivered from the system. This is frequently defined as the volume of gas obtained from the storage vessel when the pressure is reduced from the storage pressure of 3.5 MPa (35 bar) to one bar, usually at 298 K. This parameter is referred to as the delivered V/V and is easy to determine directly and free from ambiguity. Moreover, it is independent of the ratio of gas adsorbed to that which remains in the gaseous state. To determine the delivered V/V an adsorbent filled vessel of at least several hundred cubic centimeters is pressurized at 3.5 MPa and allowed to cool under that pressure to 298 K. The gas is then released over a time period sufficient to allow the bed temperature to return to 298 K. A blank, where the vessel is filled with a volume of non-porous material, such as copper shot. [Pg.284]

EtOH). No methoxyl is present. It forms a series of crystalline double chlorides with cadmium, zinc or copper, does not give the thalleioquin reaction, and solutions of its sulphate are not fluorescent. It is diacidie and forms two series of salts of which the nitrate, B. HNOj, crystallises in minute prisms, m.p. 196°, insoluble in water. Cinchonamine hydrochloride, B. HCl, laminae or B. HCl. HjO, cubical crystals, has been suggested for use in the estimation of nitrates. When warmed with strong nitric acid the alkaloid furnishes dinitrocinchonamine. It gives an amorphous, monoacetyl derivative, and forms a methiodide, m.p. 208 , which with silver oxide yields an amorphous methylcinchonamine. Raymond-Hamet found that cinchonamine ves typical indole colour reactions and is probably an indole alkaloid. This seems to have been... [Pg.466]

Beta radiation Electron emission from unstable nuclei, 26,30,528 Binary molecular compound, 41-42,190 Binding energy Energy equivalent of the mass defect measure of nuclear stability, 522,523 Bismuth (m) sulfide, 540 Blassie, Michael, 629 Blind staggers, 574 Blister copper, 539 Blood alcohol concentrations, 43t Body-centered cubic cell (BCC) A cubic unit cell with an atom at each comer and one at the center, 246 Bohrmodd Model of the hydrogen atom... [Pg.683]

The density of copper is 8.93 g-cm 3 and its atomic radius is 128 pm. Is the metal (a) close-packed or (b) body-centered cubic ... [Pg.319]

The differing malleabilities of metals can be traced to their crystal structures. The crystal structure of a metal typically has slip planes, which are planes of atoms that under stress may slip or slide relative to one another. The slip planes of a ccp structure are the close-packed planes, and careful inspection of a unit cell shows that there are eight sets of slip planes in different directions. As a result, metals with cubic close-packed structures, such as copper, are malleable they can be easily bent, flattened, or pounded into shape. In contrast, a hexagonal close-packed structure has only one set of slip planes, and metals with hexagonal close packing, such as zinc or cadmium, tend to be relatively brittle. [Pg.324]

Let us first consider, as an example, the copper-zinc system of alloys.1 The ordinary yellow brass of commerce is restricted in composition to the first (copper-rich) phase of the system. This phase, which has the face-centered cubic structure characteristic of copper, is followed successively, as the zinc content is increased, by the /3-phase (body-centered cubic),... [Pg.362]

The /3-alloys are different in nature from the 7-alloys and the a-manganese and /3-manganese structures discussed above, in that they are not complex structures, but are simple, being based upon the body-centered arrangement. /3-Brass, for example, has either a disordered structure, above 480°K, the copper and zinc atoms in essentially equal number being distributed largely at random over the points of a body-centered cubic lattice, or an ordered structure, below 300°K, with copper and zinc at the positions 000 and, respectively, of the cubic unit. Moreover, the physical properties of /3-brass are not those that indicate a filled zone structure. [Pg.371]

The ruthenium-copper and osmium-copper systems represent extreme cases in view of the very limited miscibility of either ruthenium or osmium with copper. It may also be noted that the crystal structure of ruthenium or osmium is different from that of copper, the former metals possessing the hep structure and the latter the fee structure. A system which is less extreme in these respects is the rhodium-copper system, since the components both possess the face centered cubic structure and also exhibit at least some miscibility at conditions of interest in catalysis. Recent EXAFS results from our group on rhodium-copper clusters (14) are similar to the earlier results on ruthenium-copper ( ) and osmium-copper (12) clusters, in that the rhodium atoms are coordinated predominantly to other rhodium atoms while the copper atoms are coordinated extensively to both copper and rhodium atoms. Also, we conclude that the copper concentrates in the surface of rhodium-copper clusters, as in the case of the ruthenium-copper and osmium-copper clusters. [Pg.261]

Coco, S., Cordovdla, C., Donnio, B., Espinet, P., Garda-Casas, M.J. and Gudlon, D. (2008) Self-Organization of Dendritic Supermolecules, Based on Isocyanide-Gold(I), -Copper(l), -Palladium(II), and -Platinum(ll) Complexes, into Micellar Cubic Mesophases. Chemistry - A European Journal, 14, 3544-3552. [Pg.393]

Table 2. Conditions for preparation of cubic copper nanoparticles via seed (S)-mediated method. Table 2. Conditions for preparation of cubic copper nanoparticles via seed (S)-mediated method.
Two metals that are chemically related and that have atoms of nearly the same size form disordered alloys with each other. Silver and gold, both crystallizing with cubic closest-packing, have atoms of nearly equal size (radii 144.4 and 144.2 pm). They form solid solutions (mixed crystals) of arbitrary composition in which the silver and the gold atoms randomly occupy the positions of the sphere packing. Related metals, especially from the same group of the periodic table, generally form solid solutions which have any composition if their atomic radii do not differ by more than approximately 15% for example Mo +W, K + Rb, K + Cs, but not Na + Cs. If the elements are less similar, there may be a limited miscibility as in the case of, for example, Zn in Cu (amount-of-substance fraction of Zn maximally 38.4%) and Cu in Zn (maximally 2.3% Cu) copper and zinc additionally form intermetallic compounds (cf. Section 15.4). [Pg.157]

A theoretical interpretation relating the valence electron concentration and the structure was put forward by H. Jones. If we start from copper and add more and more zinc, the valence electron concentration increases. The added electrons have to occupy higher energy levels, i.e. the energy of the Fermi limit is raised and comes closer to the limits of the first Brillouin zone. This is approached at about VEC = 1.36. Higher values of the VEC require the occupation of antibonding states now the body-centered cubic lattice becomes more favorable as it allows a higher VEC within the first Brillouin zone, up to approximately VEC = 1.48. [Pg.162]

The overlap between 5- and p-bands also occurs for the alkali metals and for the monovalent noble metals copper, silver, and gold, which have face-centered cubic structures. The noble metals differ from the alkalis because of the filled d-shell just below the 5-shell in energy the d-band and the 5-band overlap in the solid. [Pg.29]


See other pages where Copper cubic is mentioned: [Pg.1215]    [Pg.641]    [Pg.1215]    [Pg.641]    [Pg.256]    [Pg.214]    [Pg.432]    [Pg.194]    [Pg.239]    [Pg.567]    [Pg.226]    [Pg.253]    [Pg.247]    [Pg.191]    [Pg.280]    [Pg.164]    [Pg.533]    [Pg.301]    [Pg.1156]    [Pg.1260]    [Pg.316]    [Pg.371]    [Pg.606]    [Pg.611]    [Pg.807]    [Pg.838]    [Pg.143]    [Pg.233]    [Pg.103]    [Pg.33]    [Pg.421]    [Pg.151]    [Pg.161]    [Pg.138]   
See also in sourсe #XX -- [ Pg.16 , Pg.20 , Pg.24 , Pg.80 ]




SEARCH



© 2024 chempedia.info