Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper complexes catechol oxidase activity

Granata, A., Monzani, E. and Casella, L. (2004), Mechanistic insight into the catechol oxidase activity by a biomimetic dinuclear copper complex, J. Biol. Inorg. Chem., 9, 903-913. [Pg.255]

While the very rigid and, with respect to the type of donor groups and their geometric disposition (two trans-disposed pyridine donors and two cis-oriented tertiary amines), enforced and inflexible geometry precludes an accurate structural and spectroscopic modeling of copper proteins, it was especially feature (3.) that lead to the isolation and characterization of novel model complexes with hemocyanine- and catechol oxidase activities properties (81, 192, 196, 213). In the latter case, it was possible to isolate and structurally characterize complexes with coordinated catechol model substrates with structural features, which have been proposed to be of relevance in the enzyme catalysis cycle, but have not been observed before in low molecular weight complexes (192, 213). [Pg.669]

Krebs and co-workers synthesized a series of dinuclear copper(II) complexes as models for catechol oxidase 91 (365) (distorted SP Cu-Cu 2.902 A), (366) (distorted five-coordinate geometry Cu-Cu 3.002A), (367) (distorted SP Cu-Cu 2.995 A), (368) (distorted five-coordinate geometry Cu-Cu 2.938 A), and (369) (distorted SP Cu-Cu 2.874 A). These complexes were characterized by spectroscopic and electrochemical methods. From kinetic analysis, a catalytic order for catecholase activity (aerial oxidation of 3,5 -di - ter t-buty lcatec h o 1) was obtained.326... [Pg.814]

There has been enormous activity in the field of copper(I)-dioxygen chemistry in the last 25 years, with our information coming from both biochemical-biophysical studies and to a very important extent from coordination chemistry. This has resulted in the structural and spectroscopic characterization of a large number of copper dioxygen complexes, some of which are represented in Figure 14.2. The complex F, first characterized in a synthetic system was subsequently established to be present in oxy-haemocyanin, and is found in derivatives of tyrosinase and catechol oxidase, implying its involvement in aromatic hydroxylations in both enzymes and chemical systems. [Pg.244]

In 1998, Krebs and co-authors reported the crystal structures of the catechol oxidase isolated from sweet potatoes (Ipomoea batatas) in three catalytic states the native met (CunCun) state (Figure 5.2a), the reduced deoxy (Cu Cu1) form, and the complex with the inhibitor phenylthiourea (Figure 5.2b) [19]. Typically for the type 3 active site, each copper ion is coordinated by three histidine residues from the protein backbone. In the native met state, the two copper ions are 2.9 A apart and, in addition to six histidine residues, a bridging solvent molecule, most likely a hydroxide anion, has been refined in close proximity to the two metal centers... [Pg.105]

As compared to the oxygenation reaction of phenols to catechols (phenolase reaction), dehydrogenation of catechols to the corresponding o-quinones (catecholase reaction) proceeds more readily. Thus, the catalytic activity of several tyrosinase and catechol oxidase models have been examined using 2,4-di-tert-butylcatechol (DTBC) as a substrate.Direct reactions between the (/r-77 77 -peroxo)dicopper(II) complexes and DTBC also have been studied at a low tempera-and a semiquinone-copper(II) complex has been isolated and structurally characterized... [Pg.386]

In this chapter, the dioxygen activation mechanism at the dinuclear copper-active sites of tyrosinase and catechol oxidase has been surveyed. In both enzymes, a (ji-rfirf -peToxo) dicopper(II) complex has been detected and characterized as a common reactive intermediate by several spectroscopic methods. In spite of longstanding efforts in the enzymological studies, mechanistic details of the enzymatic reactions (phenolase and catecholase activities) still remain ambiguous. On the other hand, recent developments in the model chemistry have provided a great deal of information about the structure and physicochemical properties as well as the reactivity of the peroxo intermediate and have advanced our understanding of the enzymatic reactions. [Pg.389]


See other pages where Copper complexes catechol oxidase activity is mentioned: [Pg.762]    [Pg.56]    [Pg.98]    [Pg.670]    [Pg.518]    [Pg.370]    [Pg.186]    [Pg.188]    [Pg.195]    [Pg.221]    [Pg.236]    [Pg.293]    [Pg.346]    [Pg.348]    [Pg.3292]    [Pg.79]    [Pg.99]    [Pg.435]    [Pg.204]    [Pg.4]    [Pg.169]    [Pg.308]    [Pg.102]   
See also in sourсe #XX -- [ Pg.674 , Pg.675 , Pg.676 ]




SEARCH



Active copper

Catechol

Catechol oxidase

Catechol, complexes

Catecholate

Catecholate complexes

Copper activation

Copper activity

Oxidases copper

© 2024 chempedia.info