Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper activation energy

Many investigations are reported on azides of barium, calcium, strontium, lead, copper, and silver in the range 100 to 200°C (212 to 392°F). Time exponents were 6 to 8 and activation energies of 30 to 50 kcal/g mol (54,000 to 90,000 Btu/lb mol) or so. Some difficulties with reproducibility were encountered with these hazardous materials. [Pg.2122]

Ashby pointed out diat die sintering studies of copper particles of radius 3-15 microns showed clearly the effects of surface diffusion, and die activation energy for surface diffusion is close to the activation energy for volume diffusion, and hence it is not necessarily the volume diffusion process which predominates as a sintering mechanism at temperatures less than 800°C. [Pg.207]

A unique method to generate the pyridine ring employed a transition metal-mediated 6-endo-dig cyclization of A-propargylamine derivative 120. The reaction proceeds in 5-12 h with yields of 22-74%. Gold (HI) salts are required to catalyze the reaction, but copper salts are sufficient with reactive ketones. A proposed reaction mechanism involves activation of the alkyne by transition metal complexation. This lowers the activation energy for the enamine addition to the alkyne that generates 121. The transition metal also behaves as a Lewis acid and facilitates formation of 120 from 118 and 119. Subsequent aromatization of 121 affords pyridine 122. [Pg.319]

The work of Porter et al. has shown that for copper in phosphoric acid the interfacial temperature was the main factor, and furthermore this was the case for positive or negative heat flux. Activation energies were determined for this system they indicated that concentration polarisation was the rate-determining process, and by adjustment of the diffusion coefficient and viscosity for the temperature at the interface and the application of dimensional group analysis it was found that ... [Pg.328]

There are few studies in the literature on the kinetics and mechanism of oxidation over base metal oxides. Blumenthal and Nobe studied the oxidation of CO over copper oxide on alumina between 122 and 164°C. They reported that the kinetics is first order with respect to CO concentration, and the activation energy is 20 kcal/mole (77). Gravelle and Teichner studied CO oxidation on nickel oxide, and found that the kinetics is also first order with respect to CO concentration (78). They suggested that the mechanism of reaction is by the Eley-Rideal mechanism... [Pg.86]

The NO reduction over Cu-Ni-Fe alloys has been studied recently by Lamb and Tollefson. They tested copper wires, stainless steel turnings, and metal alloys from 378 to 500°C, at space velocities of 42,000-54,000 hr-1. The kinetics is found to be first order with respect to hydrogen between 400 and 55,000 ppm, and zero order with respect to NO between 600 and 6800 ppm 104). The activation energies of these reactions are found to be 12.0-18.2 kcal/mole. Hydrogen will reduce both oxygen and NO when they are simultaneously present. CO reduction kinetics were also studied over monel metals by Lunt et al. 43) and by Fedor et al. 105). Lunt speculated that the mechanism begins by oxidant attack on the metal surface... [Pg.97]

The attention of the authors was particularly directed toward the increased activity of the nickel catalyst film when copper was added. This increase is revealed in a change of the initial reaction rate of copper itself and of all the alloys (except those containing 25-35% nickel) they are more active than nickel itself. A respectively similar difference was observed for the activation energy and the preexponential factor. [Pg.271]

Activation Energy of Hi-Di Equilibration Reaction on Nickel and Nickel-Copper Film Catalysts (a) Within Temperature Range —100°— - 20°C and (b) After Preheating in Hydrogen at Jfl-50°C (55)... [Pg.272]

The recombination reaction proceeding on nickel-copper alloy films rich in copper and on copper itself maintained a constant value of the activation energy of about 1 kcal/mole. The Arrhenius plot for an alloy film Ni20Cu80 is represented in Fig. 14. [Pg.280]

Fig. 14. Arrhenius plot of the kinetics of H atom recombination on a rich in copper alloy film catalyst Ni20Cu80. Within the whole range of temperature the linear relationship holds activation energy constant. After Karpinski (65a). Fig. 14. Arrhenius plot of the kinetics of H atom recombination on a rich in copper alloy film catalyst Ni20Cu80. Within the whole range of temperature the linear relationship holds activation energy constant. After Karpinski (65a).
Ng et al. [1261] report that dehydration of copper sulphate pentahydrate (- CuS04 3 H20) 320—336 K, obeys the Avrami—Erofe ev equation [eqn. (6), n = 2] with E = 104 kj mole-1. Dehydration of the trihydrate (- CuS04 H20), 343.5—359 K, obeyed the same rate expression with E = 134 kJ mole 1. Activation energies are approximately equal to reaction enthalpies. [Pg.131]

It is particularly helpful that we can take the Cu-Ni system as an example of the use of successive deposition for preparing alloy films where a miscibility gap exists, and one component can diffuse readily, because this alloy system is also historically important in discussing catalysis by metals. The rate of migration of the copper atoms is much higher than that of the nickel atoms (there is a pronounced Kirkendall effect) and, with polycrystalline specimens, surface diffusion of copper over the nickel crystallites requires a lower activation energy than diffusion into the bulk of the crystallites. Hence, the following model was proposed for the location of the phases in Cu-Ni films (S3), prepared by annealing successively deposited layers at 200°C in vacuum, which was consistent with the experimental data on the work function. [Pg.122]

Choudhary et al. [58] found reaction controlled kinetics with an activation energy of 56.6 kJ/mol for the leaching of skeletal nickel, similar to the leaching of skeletal copper. The kinetics did not fit Levenspiel s shrinking core model [57] but it should be noted that the leaching solution was agitated with a flat stirrer at 1500 rpm. [Pg.145]


See other pages where Copper activation energy is mentioned: [Pg.258]    [Pg.459]    [Pg.234]    [Pg.98]    [Pg.1039]    [Pg.272]    [Pg.273]    [Pg.280]    [Pg.92]    [Pg.285]    [Pg.767]    [Pg.271]    [Pg.195]    [Pg.648]    [Pg.544]    [Pg.53]    [Pg.142]    [Pg.174]    [Pg.28]    [Pg.115]    [Pg.56]    [Pg.153]    [Pg.74]    [Pg.12]    [Pg.209]    [Pg.439]    [Pg.80]    [Pg.197]    [Pg.278]    [Pg.23]    [Pg.22]    [Pg.30]    [Pg.34]    [Pg.43]    [Pg.73]    [Pg.83]   
See also in sourсe #XX -- [ Pg.309 ]




SEARCH



Active copper

Copper activation

Copper activity

© 2024 chempedia.info